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Abstract

The axisymmetric dynamics of a bubble rising in a Bingham fluid under

the action of buoyancy is studied. The Volume-of-Fluid (VOF) method is

used to solve the equations of mass and momentum conservation, coupled

to an equation for the volume fraction of the Bingham fluid. A regularised

constitutive model is used for the description of the viscoplastic behaviour of

the material. The numerical results demonstrate that the rise dynamics are

complex for large yield stresses, and for weak surface tension. Under these

conditions, for which the bubble is highly deformable, the rise is unsteady

and is punctuated by periods of rapid acceleration which separate stages of

quasi-steady motion. During the acceleration periods, the bubble aspect ratio

exhibits oscillations about unity, whose amplitude and wavelength increase

with increasing yield stress and decreasing surface tension. These oscillations

are accompanied by the alternating formation and destruction of unyielded
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zones at the bubble equator, as the bubble appears to “swim” upwards.

Keywords: Multiphase flow, Non-Newtonian, Immiscible fluids, Bubbles,

Numerical simulation.

1. Introduction

The motion of droplets in fluids that exhibit yield stress is important

in many engineering applications, including food processing, oil extraction,

waste processing and biochemical reactors. Yield stress fluids or viscoplastic

materials flow like liquids when subjected to stress beyond some critical value,

the so-called yield stress, but behave as a solid below this critical level of

stress; detailed review on yield stress fluids can be found in [1, 2]. As a result

the gravity-driven bubble rise in a viscoplastic material is not always possible

as in the case of Newtonian fluids but occurs only if buoyancy is sufficient

to overcome the material’s yield stress [3, 4]; the situation is also similar for

the case of a settling drop or solid particle [5].

The first constitutive law proposed to describe this material behavior is

the Bingham model [6] which was later extended by Herschel & Bulkley [7]

to take into account the effects of shear-thinning (or thickening). According

to this model the material can be in two possible states; it can be either

yielded or unyielded, depending on the level of stress it experiences. As the

common boundary of the two distinct regions the so-called yield surface is

approached, the exact Bingham model becomes singular. In simple flows this

singularity does not generate a problem, but, in more complex flows the dis-
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continuous behaviour of the Bingham model may pose significant difficulties

due to the fact that in most cases the yield surface is not known a priori

but must be determined as part of the solution. Nevertheless, there are ex-

amples of successful analysis of two-dimensional flows using this model at

the expense of relatively complicated numerical algorithms [5, 8–10]. A sim-

pler way to overcome these difficulties is to modify the Bingham constitutive

equation in order to produce a non-singular constitutive law, by introducing

a ‘regularization’ parameter [11]. This method has been used with success

by several researchers in the past [4, 12–15] and when used with caution can

give significant insight in the behaviour of viscoplastic materials.

The motion of air bubbles in viscoplastic materials has attracted the in-

terest of many research groups in the past. The first reported experimental

study on rising bubbles in a viscoplastic material was done by Astarita &

Apuzzo [16] who reported bubble shapes and velocities in Carbopol solu-

tions. They observed that curves of bubble velocity vs bubble volume for

viscoplastic liquids had an abrupt change in slope at a critical value of bub-

ble volume that depended on the concentration of Carbopol in the solution,

i.e. the yield stress of the material. Many years later, Terasaka & Tsuge

[17] used xanthan gum and Carbopol solutions to examine the formation of

bubbles at a nozzle and derived an approximate model for bubble growth.

Dubash & Frigaard [18] also performed experiments with Carbopol solutions

and were able to comfirm the observations of Astarita & Apuzzo [16] on the

existence of a critical bubble radius required to set it in motion and noted
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that the entrapment conditions are affected significantly by surface tension.

It is also noteworthy that the observed bubble shapes inside a vertical pipe

were different from [16] exhibiting a cusped tail, resembling much the in-

verted teardrop shapes often found inside a viscoelastic medium [16, 19, 20].

Similar bubble shapes have been found in the experimental studies by Siko-

rski et al. [21] and Mougin et al. [22], using Carbopol solutions of different

concentrations. The latter authors also studied the significant role of internal

trapped stresses within a Carbopol gel on the trajectory and shape of the

bubbles; their findings were in agreement with an earlier study presented by

Piau [23].

From a theoretical point of view, Bhavaraju et al. [24] performed a per-

turbation analysis in the limit of small yield stress for a spherical air bubble.

Stein & Buggish [25] were interested on the mobilization of bubbles by setting

an oscillating external pressure and provided analytical solutions along with

some experimental data; the latter suggested that larger bubbles tend to rise

faster than smaller bubbles at similar amplitudes. Dubash & Frigaard [3]

employed a variational method to estimate the conditions under which bub-

bles should remain static. These estimations, however, were characterized

as conservative, in the sense that they provide a sufficient but not necessary

condition. A detailed numerical study of the steady bubble rise, using the

regularized Papanastasiou model [26], has been performed by Tsamopoulos

et al. [4]. These authors presented mappings of bubble and yield surface

shapes for a wide range of dimensionless parameters, taking into account the
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effects of inertia, surface tension and gravity. Moreover, they were able to

evaluate the conditions for bubble entrapment. Their work was followed by

the study of Dimakopoulos et al. [10] who used the augmented Lagrangian

method to obtain a more accurate estimation of the stopping conditions. It

was shown that the critical Bingham number, Bn, does not depend on the

Archimedes number in accordance with Tsamopoulos et al. [4], but depends

non-monotonically on surface tension. We should note that in both studies

the shape of the bubble near critical conditions could not reproduce the in-

verted teardrop shapes seen in experiments [18, 21, 22] and raised questions

whether this is due to elasticity, thixotropy or wall effects. Besides the steady

solutions it is also interesting to investigate the bubble dynamics through

time-dependent simulations. This was done by Potapov et al. [27] and Singh

& Denn [28] using the VOF method and the level-set method, respectively.

Singh & Denn [28] considered creeping flow conditions and performed simu-

lations for single and multiple bubbles. It was shown that multiple bubbles

and droplets can move inside the viscoplastic material under conditions that

a single bubble or droplet with similar properties would have been trapped

unable to overcome the yield stress. Potapov et al. [27] also studied the case

of a single or two interacting bubbles but also took into account the effect of

inertia, albeit for a low Reynolds number. For the parameter range that they

have used the single bubble always reached a quasi-steady state. We should

note at this point that for some cases (e.g. for high values of the Archimedes

number) Tsamopoulos et al. [4] were not able to calculate steady shapes
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which is probably an indication that the flow may become time-dependent.

Even in the cases where a steady solution could be obtained it is not certain

that this solution is stable. Therefore a question that arises is whether for

some parameter values it is possible to get a time-dependent solution and

what would be the dynamics of the bubble flow in this case. This is the

question that our paper will attempt to address.

In this paper, we study the buoyancy-driven rise of a bubble inside an

infinite viscoplastic medium, assuming axial symmetry. To account for the

viscoplacity we consider the regularized Herschel-Bulkley model. We employ

the Volume-of-Fluid method to follow the deforming bubble along the do-

main. Our results indicate that in the presence of inertia and in the case of

weak surface tension the bubble does not reach a steady state and the dy-

namics may become complex for sufficiently high yield stress of the material.

The rest of the paper is organized as follows. In Section 2, we outline the

governing equations, and in Section 3 discuss our numerical results. Finally,

concluding remarks are given in Section 4.

2. Formulation

2.1. Governing equations

We consider the rise of a bubble (Newtonian fluid ‘B’) in a viscoplastic

material (fluid ‘A’) under the action of buoyancy within a cylindrical domain

of diameter H and height L, as shown in Fig. 1. We use an axisymmetric,

cylindrical coordinate system, (r, z), to model the flow dynamics, in which r

and z denote the radial and axial coordinates, respectively, the latter being
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aligned in the opposite direction to gravity. The bubble is initially present

at a distance zi above the bottom of the domain located at z = 0. The gov-

erning equations of the problem correspond to those of mass and momentum

conservation:

∇ · u = 0, (1)

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p+∇ ·

[
µ(∇u+∇uT )

]
+ F, (2)

and the following equation for the volume fraction, c, of the fluid A.

∂c

∂t
+ u · ∇c = 0. (3)

In the above equations, u = (ur, uz) denotes the velocity field in which ur

and uz represent the radial and axial velocity components, respectively, p is

the pressure field, t denotes time, and F is the combined body and surface

forces per unit volume, which include the gravity and surface tension forces

given by:

F = δσκn− ρgj; (4)

here, j denotes the unit vector along the vertical direction, σ and g represent

the (constant) interfacial tension and gravitational acceleration, respectively,

δ is the Dirac delta function, and κ = ∇ · n is the interfacial curvature in

which n is the outward-pointing unit normal to the interface.

The density, ρ, and the viscosity, µ, are assumed to depend on the volume

fractions of the fluids:

ρ = cρA + (1− c)ρB, (5)
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µ = cµA + (1− c)µB, (6)

where ρi and µi (i = A,B) denote the densities and the dynamic viscosities,

respectively, of the surrounding Bingham fluid (’A’) and the Newtonian fluid

(’B’) inside the bubble. Here, ρi (i = A,B) and µB are considered to be

constant whereas µA is given by

µA =
τ0

Π+ ǫ
+ µ0 (Π + ǫ)n−1 , (7)

where τ0 and n are the yield stress and flow index, respectively, ǫ is a small

regularization parameter, and µ0 is the fluid consistency; Π = (EijEij)
1/2 is

the second invariant of the strain rate tensor, wherein Eij ≡ 1

2
(∂ui/∂xj + ∂uj/∂xi).

In the simulations to be presented in this paper and after careful evaluation,

we have chosen the value of ǫ down to 10−4 in order to neither affect the

yield surface by overly increasing ǫ nor produce numerical instabilities or

stiff equations by decreasing it further; similar values for ǫ have been used

earlier by Singh and Denn [28]. Finally, we set n = 1 henceforth so that

our non-Newtonian fluid corresponds to a Bingham plastic and the effect of

a shear-dependent viscosity will be ignored for the purposes of the present

study. An important ingredient of every study that concerns the flow of a

viscoplastic material is the determination of the position of the yield surface

and when using a regularized model this can be achieved a posteriori by

using the following criterion:

yielded material: T > τ0, (8)
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unyielded material: T ≤ τ0, (9)

where T denotes the second invariant of the stress tensor in material ‘A’,

T =

[
1

2
τijτji

]1/2
(10)

and τij is given by

τij = µAEij. (11)

2.2. Scaling

The following scaling is employed in order to render the governing equa-

tions dimensionless:

(r, z) = R (r̃, z̃) , t =
R

V
t̃, u = V ũ, p = ρAV

2p̃,

µ = µ0µ̃, ρ = ρAρ̃, (12)

where R is the initial radius of the bubble, the velocity scale is V =
√
gR,

and the tildes designate dimensionless quantities. After dropping tildes from

all nondimensional variables, the governing dimensionless equations are given

by

∇ · u = 0, (13)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇ ·

[
µ(∇u+∇uT )

]
+ F, (14)

∂c

∂t
+ u · ∇c = 0, (15)
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where Re ≡ ρAV R/µ0 denotes the Reynolds number. The dimensionless

density is given by

ρ = c+ (1− c)ρr, (16)

where ρr ≡ ρB/ρA. The dimensionless viscosity, µ, is given by:

µ =

(
Bn

Π+ ǫ
+m (Π + ǫ)n−1

)
c+ (1− c)µr, (17)

where Bn ≡ τ0R/µ0V is the Bingham number; m = (V/R)n−1 and µr =

µB/µ0. The position of the yield surface is determined by evaluating the

dimensionless second stress tensor, T , inside fluid ’A’ and finding the locus

of points for which T = Bn.

Finally, in Eq. 14, the combined body and surface forces, F, is given by

F = δ
∇ · n
Bo

n− ρj, (18)

where Bo(≡ ρAgR
2/σ0) is the Bond number. A discussion of the results is

presented next.

3. Results

3.1. Numerical method and validation

We use a finite-volume flow solver [29] that solves Eqs. (13)-(15) on

a collocated grid. It is to be noted that the density and the viscosity ra-

tios in the problem considered in the present study, ρr and µr, are very

large, which can create spurious currents at the interface. The open-source

finite-volume fluid flow solver [30] (Gerris) minimizes this problem by using
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the balanced-force continuum surface force formulation for the calculation of

surface tension. This solver is also equipped with adaptive mesh refinement

capabilities. The results obtained using this solver are cross-checked using

a bespoke finite-volume staggered grid code based on diffuse-interface tech-

nique. The pressure and the volume fraction of the outer fluid are defined

at the cell-centres, and the velocity components are defined at the cell faces,

respectively. In our code weighted-essentially-non-oscillatory (WENO), and

central difference schemes are used to discretize the advective and diffusive

terms in Eq. (15), respectively. In order to achieve second-order accuracy,

the Adams-Bashforth and the Crank-Nicholson methods are used to dis-

cretize the advective and dissipation terms in Eq. (14), respectively.

We assume that the flow is symmetrical about the axis r = 0. Neumann

boundary conditions are imposed at the rest of the boundaries. In Fig.

2, we present an illustration of the convergence of the numerical solutions

upon mesh refinement. The parameters chosen for this case are Re = 70.71,

Bn = 14.213, µr = 0.01, ρr = 0.001, m = 1 and Bo = 30. The reader is also

referred to the supplementary material of Tripathi et al. [29] for an extensive

validation of the present code.

3.2. Discussion

We begin the discussion of our results by examining the dependence of

the results on the regularisation parameter, ǫ, used in the viscosity model

for fluid ‘A’, given by Eq. (17), for Re = 70.71, Bn = 14.213, µr = 0.01,

ρr = 0.001, m = 1 and Bo = 30. In Fig. 3, we show that the bubble rise
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is accompanied by its deformation and the development of a yielded region

which surrounds the bubble at t = 10, in which the stress generated from the

bubble motion is sufficient to exceed the yield stress in fluid ‘A’; this region

is itself surrounded by unyielded fluid. Also shown in Fig. 3 is the formation

of three small unyielded regions: two at the bubble equator, and one near the

dimple located at the bubble base; similar predictions have been presented

by Tsamopoulos et al. [4] using the Papanastasiou model [26].

It is seen that the dependence of the shapes of the bubble and the yielded

region surrounding it, as well as the extent of the unyielded regions imme-

diately adjacent to the bubble becomes progressively weaker with increasing

ǫ. At this point, it should be noted that decreasing the value of ǫ the system

of equations becomes stiffer and more difficult to handle numerically. This

may also result in the appearance of numerical noise and therefore very small

values of ǫ should actually be avoided. A more accurate evaluation of the

yield surface position is possible, as was shown recently by Dimakopoulos et

al. [10] using the augmented Langrangian method at the expense of a sig-

nificantly more complex numerical algorithm. Nevertheless, for the purposes

of this study, the calculated yield surfaces are considered to be reasonably

accurate. We have also found that the time evolution of the bubble aspect

ratio and its centre of gravity, zCG, exhibit a similar dependence on ǫ and

become virtually indistinguishable with decreasing ǫ, as shown in Fig. 4.

Thus, the rest of the results discussed in this paper have been generated

using ǫ = 0.001.
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Next, we study the bubble rise dynamics by examining the temporal

evolution of the bubble aspect ratio and centre of gravity for varying Bingham

number, Bn, with Re = 7.07, Bo = 10, µr = 0.01, ρr = 0.001, and m = 1.

It is seen in Fig. 5 that for low Bn values, which reflect the presence of

a weak yield stress, the bubble undergoes severe deformation at relatively

early times before assuming a constant aspect ratio. More specifically, for

Bn = 0.071 the aspect ratio is found to be approximately equal to 0.48 in

good agreement with the predictions given by Tsamopoulos et al. [4]. We

also found that, as expected, the rise velocity of the bubble decreases with

Bn due to the increased resistance associated with the larger yield stresses

(see Fig. 5).

In the low Bn range, the bubble achieves a constant rise speed rapidly, as

shown by the linear dependence of zCG on time. In particular for Bn = 0.071

the calculated terminal velocity is approximately equal to 0.765 in agreement

with the predicted value of 0.75 given in Tsamopoulos et al. [4]. The extent

of bubble deformation and rise speed decrease with increasing Bn for Bn less

than unity for the parameters used to generate the results shown in Fig. 5;

the same trend was also found in Tsamopoulos et al.[4]. For higher Bn values,

e.g. Bn = 0.99, we notice that the bubble aspect ratio (1.05) and terminal

velocity (0.226) differ significantly from the predictions of Tsamopoulos et al.

[4], i.e. 1.25 and 0.07, respectively. The difference cannot be attributed to the

finite viscosity of the fluid since, as shown in Fig. 6, increasing the viscosity

ratio, µr, leads to the decrease of the rise velocity. We notice though that
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even at late times the deformation of the bubble has not reached a steady

state (see Fig. 6b) and continues to change. As shown in Fig. 5b, the latter

effect is more prominent for even higher values of the Bn number where we

see clearly that the flow does not reach a steady state and that the bubble

aspect ratio exhibits finite amplitude oscillations. These oscillations in the

bubble deformation may lead to yielding of the surrounding material and

thereby could be responsible for the enhancement of the bubble motion.

Fig. 7 depicts the spatio-temporal evolution of the shape of the bubble

and its surrounding unyielded region as a function of Bn for the same param-

eters used to generate Fig. 5. Inspection of this figure shows that the extent

of the unyielded region increases with Bn, as expected, and for Bn < 1,

the bubble widens as it rises, which is consistent with the results shown in

Fig. 5(b) for the same range of parameter values and in accordance with

the findings of Tsamopoulos et al. [4]. These shapes become steady with

increasing time. For Bn = 1.34, it is evident that the bubble aspect ratio

exceeds unity, which is also consistent with Fig. 5(b), likely brought about

by the confinement due to the smaller yielded region associated with this

value of Bn; it is also evident that the shapes of the bubble and unyielded

regions do not achieve a steady-state in this case.

In Fig. 8 we show contour plots of the radial and axial components of

the velocity field for Bn = 0, 0.35, 0.99, 1.34, and the rest of the parameters

remain unchanged from those of Fig. 5. The case with Bn = 0 corresponds

to the Newtonian case. It is clearly seen that the radial and axial velocity
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components exhibit stagnation contours that separate regions of outward and

inward, and upwards and downwards motion, respectively; at regions where

the radial motion of the fluid is negligible, unyielded zones are likely to oc-

cur. The stagnation contour associated with the vertical component moves

progressively closer to the interface with increasing Bn; for the largest Bn

studied, it is evident that the regions nearest the top and bottom of the

bubble move upwards, while the remaining regions move downwards lead-

ing to bubble elongation. The stagnation contour associated with the radial

component emanates from rightmost bubble edge at a negative angle to the

horizontal in the Newtonian case. This contour becomes essentially horizon-

tal and the bubble, whose bottom is dimpled in the Newtonian case, becomes

well-rounded with inceasing Bn as the bubble becomes flatter at the equa-

torial plane.

It is also important to study the effect of bubble deformability on its

dynamics; this is done by varying the Bond number, Bo, which reflects the

relative significance of surface tension to gravtiational forces. In Fig. 9, it is

seen clearly that for low Bo, for which surface tension forces are dominant,

bubble deformation is small and its rise speed is constant, increasing with Bo.

For larger Bo, however, the bubble dynamics gain in complexity. The bubble

appears to undergo sudden acceleration between periods of constant rise

speed; these periods become shorter and the magnitude of the acceleration

increases with Bn, as shown in Fig. 9a. This zCG dynamics is associated with

large bubble deformation as can be ascertained upon inspection of Fig. 9b:
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the aspect ratio undergoes nonlinear oscillations about unity as the bubble

‘swims’ upwards, whose wavelength and amplitude increase with Bo.

In order to rationalise the results presented in Fig. 9 and further highlight

the role of bubble deformation in the ‘swimming’ motion discussed, we show

in Fig. 10 the spatio-temporal evolution of the shape of the bubble and the

unyielded regions for Bo = 1 and Bo = 30 while the rest of the parameters

remain unchanged from those of Fig. 9. It is seen that for Bo = 30, at

relatively early times unyielded regions are situated in the equatorial region

of the bubble, and the bubble aspect ratio is close to unity. With increasing

time, the extent of the unyielded regions decreases due to the shear stress

associated with the bubble acceleration and the bubble elongates as it rises

through a yielded region of increasing size. The bubble then decelerates to a

constant rise speed, its aspect ratio decreases, and the decrease in shear stress

in the vicinity of the interface leads to the development of unyielded zones in

the equatorial and south pole regions; the former become more pronounced

with increasing time, and the bubble aspect ratio decreases below unity as

the bubble decelerates. The process is then repeated. In contrast, no such

process is evident in the case of Bo = 1 for which the bubble appears to

suffer negligible deformation and the size of the unyielded regions remains

largely unaltered.

In Fig. 11, we show the effect of Bo on the contour plots of the radial and

axial velocity components for Bo = 1 and Bo = 30; these plots are shown for

t = 6 and t = 8.5 that correspond to the times at which the bubble achieves
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its maximal and minimal aspect ratio for Bo = 30, respectively. As can be

seen from this figure, the magnitude of both components remains essentially

unchanged for the Bo = 1 case, while, for the same times in the Bo = 30

case, the axial and radial velocity components dominate at t = 6 and t = 8.5,

resulting in bubble elongation, and flattening and dimpling, respectively.

4. Conclusions

In this paper, we have examined the axisymmetric dynamics of bub-

ble rise in Bingham fluids. We have used an open-source finite-volume flow

solver, Gerris based on volume-of-fluid methodology to study the flow, which

involves the numerical solution of the equations of mass and momentum con-

servation, and an equation of the volume fraction of the Bingham fluid. The

momentum equation accounts for surface tension and gravitational effects,

while the density and viscosity are volume fraction-weighted with respect to

the corresponding quantities of the two fluids. For the Bingham fluid, the

formula for the viscosity contains a regularisation parameter; convergence of

our results was achieved upon mesh-refinement and reduction of the magni-

tude of this parameter to sufficiently small values.

Our numerical results indicate that in the presence of weak yield stress

the bubble achieves a constant rise speed relatively rapidly, whilst its aspect

ratio, defined as the ratio of its height to its width asymptotes to a value less

than unity; unyielded zones are confined to regions that surround but are not

immediately adjacent to the bubble. With increasing yield stress, the bubble
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rise is unsteady, and the bubble aspect ratio exhibits oscillations above a

value that exceeds unity. Unyielded zones near the equatorial and south pole

regions of the bubble have also been observed to form for sufficiently large

yield stress in agreement with earlier studies in the literature [4, 10].

We have also shown that bubble deformation has a profound impact on

the dynamics. In the case of strong surface tension, the rise is steady and the

bubble suffers negligible deformation. For weak surface tension, however, the

rise is unsteady, periods of approximately constant rise speed are separated

by rapid acceleration stages that coincide with oscillations in the bubble as-

pect ratio about unity whose amplitude increases with decreasing surface

tension. These oscillations also coincide with the formation and destruc-

tion of unyielded zones in the equatorial regions. The motion executed by

the bubble for this range of parameters resembles ‘swimming’ as the bubble

appears to grab hold of the unyielded zones to propel itself upwards.
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List of figures

Fig. 1: Schematic diagram of a bubble of fluid ‘B’ rising inside a Bing-

ham fluid ‘A’ under the action of buoyancy. The bubble is placed at z = zi;

the value of H, L and zi are taken to be 20R, 48R, and 10.5R, respectively.

Initially the aspect ratio of the bubble, h/w is 1, wherein h and w are the

height and width of the bubble.

Fig. 2: The shape of the bubble along with the mesh are shown for (a) finer

and (b) coarser grids. Adaptive grid refinement has been used in the interfa-

cial and yielded regions. The smallest mesh size in the finer and coarser grids

are 0.015 and 0.0625, respectively. Note that the finer grid has been used to

generate the results presented in the subsequent figures. The parameter val-

ues are Re = 70.71, Bn = 14.213, µr = 0.01, ρr = 0.001, m = 1 and Bo = 30.

Fig. 3: The unyielded region in the non-Newtonian fluid (shown in black) for

different values of the regularized parameter, ǫ: (a) ǫ = 0.01, (b) ǫ = 0.001,

(c) ǫ = 0.0001. The rest of the parameter values are Re = 70.71, Bn =

14.213, µr = 0.01, ρr = 0.001, m = 1 and Bo = 30.

Fig. 4: (a) Temporal variation of the center of gravity, (b) the aspect ratio

of the bubble for different values of ǫ. The rest of the parameter values are

the same as those used to generate Fig. 3.
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Fig. 5: (a) Temporal variation of the center of gravity, (b) the aspect ratio of

the bubble for different values of Bn. The parameter values are Re = 7.071,

µr = 0.01, ρr = 0.001, m = 1 and Bo = 10.

Fig. 6: (a) Temporal variation of the center of gravity, (b) the aspect ratio of

the bubble for different values of µr. The parameter values are Re = 7.071,

Bn = 0.99, ρr = 0.001, m = 1 and Bo = 10.

Fig. 7: The evolution of the shape of the bubble (shown by red lines) and the

unyielded region in the non-Newtonian fluid (shown in black) for different

values of Bingham number. The results of the Newtonian case are shown for

the comparison purpose. The rest of the parameter values are the same as

those used to generate Fig. 5.

Fig. 8: Contour plots for the radial (right) and axial (left) velocity com-

ponents for (a) Bn = 0 at t = 6 (Newtonian case), (b) Bn = 0.354 at t = 6,

(c) Bn = 0.99 at t = 20 and (d) Bn = 1.34 at t = 20. In each panel the

shape of the bubble is shown by red line. The rest of the parameter values

are the same as those used to generate Fig. 5.

Fig. 9: (a) Temporal variation of the center of gravity, (b) the aspect ratio

of the bubble for different values of Bo. The rest of the parameter values are
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Re = 70.71, Bn = 14.213, µr = 0.01, ρr = 0.001, and m = 1.

Fig. 10: The evolution of the shape of the bubble (shown by red lines)

and the unyielded regions in the Bingham fluid (shown in black) for different

values of Bo. The rest of the parameter values are the same as those used

to generate Fig. 9.

Fig. 11: Contour plots for the radial (right) and axial (left) velocity compo-

nents for (a) Bo = 1 at t = 6, (b) Bo = 1 at t = 8.5, (c) Bo = 30 at t = 6

and (d) Bo = 30 at t = 8.5. In each panel the shape of the bubble is shown

by red line. The rest of the parameter values are the same as those used to

generate Fig. 9.
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Figure 1: Schematic diagram of a bubble of fluid ‘B’ rising inside a Bingham fluid ‘A’
under the action of buoyancy. The bubble is placed at z = zi; the value of H, L and zi
are taken to be 20R, 48R, and 10.5R, respectively. Initially the aspect ratio of the bubble,
h/w is 1, wherein h and w are the height and width of the bubble.
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(a) (b)

Figure 2: The shape of the bubble along with the mesh are shown for (a) finer and (b)
coarser grids. Adaptive grid refinement has been used in the interfacial and yielded regions.
The smallest mesh size in the finer and coarser grids are 0.015 and 0.0625, respectively.
Note that the finer grid has been used to generate the results presented in the subsequent
figures. The parameter values are Re = 70.71, Bn = 14.213, µr = 0.01, ρr = 0.001, m = 1
and Bo = 30.
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(a) (b) (c)

Figure 3: The unyielded region in the non-Newtonian fluid (shown in black) for different
values of the regularized parameter, ǫ: (a) ǫ = 0.01, (b) ǫ = 0.001, (c) ǫ = 0.0001. The
rest of the parameter values are Re = 70.71, Bn = 14.213, µr = 0.01, ρr = 0.001, m = 1
and Bo = 30.
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Figure 4: (a) Temporal variation of the center of gravity, (b) the aspect ratio of the bubble
for different values of ǫ. The rest of the parameter values are the same as those used to
generate Fig. 3.
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Figure 5: (a) Temporal variation of the center of gravity, (b) the aspect ratio of the bubble
for different values of Bn. The parameter values are Re = 7.071, µr = 0.01, ρr = 0.001,
m = 1 and Bo = 10.
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Figure 6: (a) Temporal variation of the center of gravity, (b) the aspect ratio of the bubble
for different values of µr. The parameter values are Re = 7.071, Bn = 0.99, ρr = 0.001,
m = 1 and Bo = 10.
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Figure 7: The evolution of the shape of the bubble (shown by red lines) and the unyielded
region in the non-Newtonian fluid (shown in black) for different values of Bingham number.
The results of the Newtonian case are shown for the comparison purpose. The rest of the
parameter values are the same as those used to generate Fig. 5.
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(a) (b)

(c) (d)

Figure 8: Contour plots for the radial (right) and axial (left) velocity components for (a)
Bn = 0 at t = 6 (Newtonian case), (b) Bn = 0.354 at t = 6, (c) Bn = 0.99 at t = 20 and
(d) Bn = 1.34 at t = 20. In each panel the shape of the bubble is shown by red line. The
rest of the parameter values are the same as those used to generate Fig. 5.
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Figure 9: (a) Temporal variation of the center of gravity, (b) the aspect ratio of the bubble
for different values of Bo. The rest of the parameter values are Re = 70.71, Bn = 14.213,
µr = 0.01, ρr = 0.001, and m = 1.
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Figure 10: The evolution of the shape of the bubble (shown by red lines) and the unyielded
regions in the Bingham fluid (shown in black) for different values of Bo. The rest of the
parameter values are the same as those used to generate Fig. 9.
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(a) (b)

(c) (d)

Figure 11: Contour plots for the radial (right) and axial (left) velocity components for (a)
Bo = 1 at t = 6, (b) Bo = 1 at t = 8.5, (c) Bo = 30 at t = 6 and (d) Bo = 30 at t = 8.5.
In each panel the shape of the bubble is shown by red line. The rest of the parameter
values are the same as those used to generate Fig. 9.
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