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Abstract

We consider constrained proper edge colorings of the following type:
Given a positive integer j and a family F of connected graphs on 3 or
more vertices, we require that the subgraph formed by the union of any
j color classes has no copy of any member of F . This generalizes some
well-known types of colorings such as acyclic edge colorings, distance-2
edge colorings, low treewidth edge colorings, etc.

For such a generalization of restricted colorings, we obtain an upper
bound of O(dmax(θ,1)) on the minimum number of colors used in such
a coloring. Here, d refers to the maximum degree of the graph and θ is

a parameter defined by θ = θ(j,F) = maxH∈F
(|V (H)|−2)
(|E(H)|−j) . Our proof is

based on probabilistic arguments. In particular, we obtain O(d) upper
bounds for proper edge colorings with various interesting restrictions
placed on the union of color classes. For example, we obtain O(d)
upper bounds on edge colorings with restrictions such as (i) the union
of any 3 color classes should be an outerplanar graph, (ii) the union
of any 4 color classes should have treewidth at most 2, (iii) the union
of any 5 color classes should be planar, (iv) the union of any 16 color
classes should be 5-degenerate, etc.

We also consider generalizations where we require simultaneously
for several pairs (ji,Fi) (i = 1, . . . , s) that the union of any ji color
classes has no copy of any member of Fi and obtain upper bounds
on the corresponding chromatic indices. As a corollary, we obtain that
each of the four restrictions above can be satisfied simultaneously using
O(d) colors.
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Some ways of improving the bounds are sketched. Also, if we drop
the requirement that the edge coloring be proper, then an O(dθ) upper
bound on the chromatic index is established. Further, the stated upper
bounds are also bounds for the list analogues of these edge colorings.

Proposed running head : Bounds on restricted edge colorings.

Key words : edge colorings, acyclic edge colorings, treewidth, proba-
bilistic arguments, maximum degree.

AMS subject classification : 05C15, 05D40.

1 Introduction

All graphs considered here are simple and undirected. A proper edge
coloring is a labeling of the edges of a graph such that touching edges (i.e.
edges sharing a common endpoint) do not get the same color. The minimum
number of colors used in a proper edge coloring of a graph G is called the
chromatic index and is denoted by χ′(G). This is a well-studied parameter
and it is known from a celebrated theorem of Vizing [?] that χ′(G) is always
at most ∆ + 1 where ∆ denotes the maximum degree of a vertex in G.

Several variants of edge colorings have been studied by imposing addi-
tional restrictions on the colorings. An interesting example is the acyclic
edge coloring which is a proper coloring of the edges of a graph such that
there are no bichromatic cycles in the coloring, equivalently, the union of
any two color classes must form a forest. Alon, McDiarmid and Reed ([1])
showed that if G has maximum degree d, then the acyclic chromatic index is
O(d). A distance-2 edge coloring or a strong edge coloring is a proper edge
coloring in which edges adjacent to a common edge must also get distinct
colors and it is always possible to obtain such a coloring using O(d2) colors.

Recently, a general notion of a restricted vertex coloring in which we place
some restrictions on the union of color classes was considered by Nesetril and
Ossona de Mendez in [7], and in [9], the present authors obtained bounds
for these types of colorings in terms of the maximum degree of the graph. In
this paper, we consider the edge analogues of such restricted colorings and
obtain similar upper bounds.
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In the case of acyclic coloring, it turns out (see [1]) that any acyclic

vertex coloring requires Ω(d4/3/(log d)1/3) colors for some graphs while, as
mentioned before, an acyclic edge coloring is always possible using only
O(d) colors. We might expect that restricted edge colorings of such type, in
general, require fewer number of colors than their vertex analogues and in
this paper we show that this is indeed true for several types of edge colorings.
In fact, we show that for several such edge colorings (like those mentioned
in the abstract), the upper bound is simply O(d).

First, we formally define a general notion of a restricted edge coloring.

Definition 1.1 Let F be a family of connected graphs and let j be a positive
integer such that j < minH∈F (|E(H)|). We define a (j,F) edge coloring
of a graph G to be a proper coloring of E(G) such that the subgraph of G
formed by the union of any j color classes does not contain an isomorphic
copy of H as a subgraph (not necessarily induced), for each H ∈ F . We
denote by χ′

j,F (G) the minimum number of colors sufficient for a (j,F) edge
coloring of G.

Remark: We require j < |E(H)| for each H ∈ F because otherwise if
G contains a copy of H such that j ≥ |E(H)|, no proper coloring of E(G)
would be a (j, F ) edge coloring. Also if j < |E(H)| for each H ∈ F , we are
guaranteed of at least one (j,F) edge coloring, namely the trivial coloring
(in which each edge gets a distinct color).

Notation: For a positive integer j and a family F of graphs such that
j < E(H) for each H ∈ F , we define and use θ(j,F) to denote the expression
(SUP stands for the supremum) below:

SUPH∈F
(|V (H)| − 2)

(|E(H)| − j)

The main result of this paper is the following theorem which provides
upper bounds on the optimal number of colors used in such a coloring.

Theorem 1.1 Let F be a family of connected graphs and let j be a positive
integer such that j < minH∈F |E(H)|. Let θ = θ(j,F). Then, there exists
a constant C = C(j,F) such that for any graph G of maximum degree d,
χ′
j,F(G) ≤ Cdmax(θ,1).
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As mentioned before, the acyclic chromatic index of any graph of maxi-
mum degree d is at most O(d). This naturally leads to the general question
of determining those (j,F) pairs for which χ′

j,F(G) = O(d). The following
corollary of the previous theorem provides an answer to this question.

Corollary 1.2 Let F be a family of connected graphs and let D = D(F) =
minH∈F |E(H)−|V (H)|. Let j be any positive integer such that j < minH∈F |E(H)|
and j ≤ D + 2. Then there exists a constant C = C(F) such that for any
graph G of maximum degree d, χ′

j,F(G) ≤ Cd.

Proof Follows from Theorem 1.1 after applying the easy to verify obser-
vation that θ ≤ 1 if and only if j ≤ D + 2.

Outline : In Section 2, we state and prove an explicit version (Proposition
2.2) of Theorem 1.1. Also, at the end of this section, we present an analogue
of this result for free (j,F) edge colorings wherein we drop the insistence
on properness of the edge coloring. In Section 3, we apply this proposition
to obtain bounds for several interesting restrictions on color classes. In
Section 4, we extend the results to edge colorings where we require several
families forbidden simultaneously. In Section 5, we discuss some ways of
improving the upper bounds further for some graph classes. In Section 6,
we discuss some improvements for free colorings and also discuss bounds on
list analogues of (j,F) edge colorings. Finally, in Section 7, we conclude
with some remarks and open problems.

2 Proof of results

The proof of Theorem 1.1 is based on probabilistic arguments and is based
on a non-trivial application of Lovász Local Lemma. We use the following
non-symmetric form of Lovász Local Lemma (see [2, ?]).

Lemma 2.1 (see [?]) Let A = {A1, A2, ..., An} be a family of events in an
arbitrary probability space such that each event Ai is mutually independent
of A \ ({Ai} ∪ Di) for some Di ⊂ A.

Then if there are reals 0 < yi < 1 such that for all i,

Pr(Ai) ≤ yi
∏

Aj∈Di

(1− yj)

then

Pr(∩(Ai)) ≥
n
∏

i=1

(1− yi) > 0
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so that with positive probability no event Ai occurs.

We prove the following explicit version of Theorem 1.1, wherein we have
not attempted to optimize the constant C(j,F).

Proposition 2.2 Let F be a family of connected graphs and let j be a pos-
itive integer as in Theorem 1.1. Let

θ = θ(j,F) = SUPH∈F
(|V (H)| − 2)

(|E(H)| − j)
,

D = D(F) = minH∈F (|E(H) − |V (H)|),

C = C(j,F) = 200 · 26j+6D · (3j)2j .

Then, for any graph G of maximum degree d, χ′
j,F(G) ≤ (Cd)max(θ,1).

Proof of Proposition 2.2:

Let G = (V,E) be the given graph. Without loss of generality, we assume
that j ≥ 2. When j = 1, any (j,F) coloring is the same as a proper edge
coloring of G which always exists with d + 1 colors (by Vizing’s Theorem,
see [4], pages-277-279). Henceforth, we assume that j ≥ 2.

Put x = ⌈(Cd)max(θ,1)⌉ where C = 200 · 26j+6D · (3j)2j .

Let f : E → {1, 2, ..., x} be a random edge coloring of G, where for each
edge e ∈ E independently, the color f(e) ∈ {1, 2, ..., x} is chosen uniformly
at random. It suffices to prove that with positive probability, f is a (j,F)
edge coloring of G. To this end, we define a family of bad events whose
absence implies that the random coloring is a (j,F) edge coloring and use
the Lovász Local Lemma to show that with positive probability none of
these events occur. The events we consider are of the following two types.

Type I: For each pair of touching edges e1 = (u, v) and e2 = (u,w), let
Ae1,e2 be the event that f(e1) = f(e2).

We define α = 1
θ . The definition of the Type II event depends on whether

α < 1 or α ≥ 1.
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le Case α < 1:
Type II: For each connected subgraph L of G such that |V (L)| ≥ 3 and
|E(L)| = max{|V (L)|−1, ⌈α(|V (L)|−2)+ j⌉}, let BL be the event that the
edges in L are colored using at most j colors in the coloring by f .

Note that for each H ∈ F , we have |E(H)| ≥ |V (H)| − 1 and |E(H)| ≥
⌈α(|V (H)| − 2) + j⌉ and hence the absence of type II events in this case
ensures that the union of any j color classes cannot have a copy of any
member of F .

Case α ≥ 1:
Type II: For each connected subgraph L of G such that |V (L)| ≥ 3 and
|E(L)| = |V (L)| + D, let BL be the event that the edges in L are colored
using at most j colors in the coloring by f . Since, by assumption, j ≥ 2,
we have D ≥ 0. Also, for each H ∈ F , we have |E(H)| ≥ |V (H)| +D and
thus the absence of type II events in this case ensures that the union of any
j color classes cannot have a copy of any member of F .

Thus we see that if none of the events of the two types above occur, then
f is a (j,F) edge coloring.

It remains to show that with positive probability none of these events
happen. To prove this, we apply the Lovász Local Lemma. Note that any
event of either of the two types is mutually independent of all events that
do not share an edge in common with the given event.

We need to estimate the number of events of each type possibly influencing
any given event. This estimate follows from the following two simple lemmas.

Lemma 2.3 Let e = (u, v) be an arbitrary edge of the graph G = (V,E).
Then the following two statements hold.

(i) e touches at most 2d edges in G.
(ii) e belongs to at most 2k2j+2D+14kdk−2 subgraphs of V (G) on k ver-

tices which are as in a Type II event.

Proof Part (i) follows from the fact that ∆(G) = d.
Part (ii) can be seen as follows: If α < 1, let G(e, k) be the set of

connected subgraphs (containing e) in G on k vertices and having max{k−
1, ⌈α(k−2)+j⌉} edges. If α ≥ 1, let G(e, k) be the set of connected subgraphs
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(containing e) in G on k vertices and having k + D edges. Let T (e, k) be
the set of k-vertex trees in G containing e with some arbitrary linear order
imposed on them.

If α < 1, each tree in T (e, k) is a subgraph of at most

(
(k
2

)

max{0, ⌈α(k − 2) + j⌉ − (k − 1)}

)

≤ k2j−2

connected subgraphs in G(e, k) on the same set of vertices. If α ≥ 1, each tree

in T (e, k) is a subgraph of at most
( (k2)
D+1

)

≤ k2D+2 connected subgraphs in

G(e, k) on the same set of vertices. Each connected subgraphH in G(e, k) has
at least one tree in T (e, k) the smallest (with respect to the assumed linear
ordering) of which is identified with H. Thus |G(e, k)| ≤ k2j+2D|T (e, k)|,
irrespective of whether α < 1 or α ≥ 1.

We now find an upper bound for |T (e, k)|. Since there are at most 4k

unlabeled trees on k vertices (see Chapter 8 of [6]), there are at most 4k

choices for choosing the unlabeled structure of a tree in T (e, k). Once this
unlabeled structure is fixed, we now have to embed this unlabeled tree in
G. The number of ways of identifying edge e with an edge in the unlabeled
tree is at most 2(k − 1) < 2k. Now the remaining vertices in the unlabeled
tree can be embedded in at most dk−2 ways. To see this, we observe that
there are d choices for each neighbor of v in the chosen unlabeled tree. Once
these are fixed, the number of choices for a neighbor of each first neighbor
is again d. Repeating this process, we can see that the number of choices
for embedding all the vertices (other than u,v) is at most dk−2. This proves
(ii).

Lemma 2.4 For {i, j} ∈ {I, II} the (i, j)-th entry of the table given below
is an upper bound on the number of events of type j which can possibly
influence an event of type i.

I II(BL′)

I 4d 4l2j+2D+14ldl−2

II(BL) 2md 2ml2j+2D+14ldl−2

Here, m is the number of edges in L and l is the number of vertices in L′.
The lemma follows from Lemma 2.3 and the fact that any event is mutually
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independent of all other events which do not share any edge with the given
event. We now estimate the probability of occurrence of each type of event.

Fact 2.5 (i) For each type I event A, Pr(A) = 1
x .

(ii) For each type II event BL, Pr(BL) ≤
jm

xm−j , where m = |E(L)|.

The number of ways in which m edges can be colored using at most j
colors from {1, 2, ..., x} is at most

(

x
j

)

jm ≤ xjjm. This proves (ii).

We now define the constants yi to enable us to apply the Local Lemma.
For an event A of type I, we define yA = 9

x . For an event BL of type II, we

define yBL
= (3j)m

xm−j , where m = |E(L)|.

If α < 1, |E(L)| − j ≥ α(|V (L)| − 2) for each forbidden j-colored graph L

and using x > 3j, we note that yBL
≤ (3j)j+α(k−2)

xα(k−2) where k = |V (L)|.

If α ≥ 1, then |E(L)| − j ≥ |V (L)| − 2 for each forbidden j-colored graph

L and hence yBL
= (3j)k+D

xk+D−j ≤ (3j)k+j−2+D−j+2

xk−2+D−j+2 ≤ (3j)k+j−2

xk−2 , where k = |V (L)|.
Here we used x > 3j and also the fact that D ≥ j − 2 whenever α ≥ 1.

In either case, by substituting x = (Cd)max(θ,1), we find that yBL
≤

(3j)k+j−2

(Cd)k−2 and hence (1− yBL
) ≥ 1− (3j)j+k−2

(Cd)k−2 .

By Lemma 2.1, Lemma 2.4 and Fact 2.5, it thus suffices to verify the
following two inequalities.

1

x
≤

9

x

(

1−
9

x

)4d
∏

l≥3

(1− yB′

L
)4l

2j+2D+14ldl−2

− (1)

jm

xm−j
≤

(3j)m

xm−j

(

1−
9

x

)2md
∏

l≥3

(1− yB′

L
)2ml2j+2D+14ldl−2

, ∀m ≥ 3 − (2)

We see that (2) is equivalent to (1). Thus it is sufficient to prove (1).
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In (1), we substitute x = (Cd)max(θ,1) where C = 200 · (2)6j+6D · (3j)2j

and using the known fact that (1 − 1
z )

z ≥ 1/4 for all z ≥ 2, as well as the

fact that (1− yBL′
) ≥ 1− (3j)j+l−2

(Cd)(l−2) we see that it is sufficient to prove:

1

9
≤ 4−

36d
x 4−S

where

S =
∑

l≥3

(3j)j+l−2 · 4l+1 · l2j+2D+1

200l−2 · 2(6j+6D)(l−2) · (3j)(2j)(l−2)

Using the fact that

j + l − 2 ≤ 2j(l − 2), ∀j ≥ 2, l ≥ 3

and also the fact that

l2j+2D+1 < 2(2j+2D)l ≤ 2(6j+6D)(l−2), ∀j ≥ 2, l ≥ 3, D ≥ −1,

we get

S ≤
∑

l≥3

4l+1

200l−2
=

64

49
<

4

3
.

We thus find that it is sufficient to prove:

1

9
≤ 4−

36d
x 4−

4
3

Since x ≥ 216d, the above inequality is true.

Thus by Lovász Local Lemma, with positive probability, none of the bad
events occur and hence a (j,F) edge coloring exists using O(dmax(θ,1)) colors.
This completes the proof of Proposition 2.2 and hence of Theorem 1.1.

2.1 Free (j,F) edge colorings

Suppose, in Definition 1.1, we do not explicitly insist that the edge coloring
be proper. We call such a coloring a free (from having to be proper) (j,F)
edge coloring. We use the notation fχ′

j,F(G) to denote the corresponding
free chromatic index. It follows that there is an analogue of Proposition 2.2
corresponding to free (j,F) edge colorings also. It is given below.
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Proposition 2.6 Let F , j, θ = θ(j,F), D = D(F), C = C(j,F) be all
the same as defined in Proposition 2.2 except that C(1,F) is redefined to be
7200 · 26+6D. Then, for any graph G of maximum degree d, the free (j,F)
chromatic index is bounded as fχ′

j,F(G) ≤ (Cd)θ.

By setting j = 1 and F = {Kt,t}, we see that θ(j,F) = 2t−2
t2−1

= 2
t+1 and

hence E(Kn) can be partitioned into O(n2/(t+1)) parts so that each part
has no copy of Kt,t. This strengthens a well-known fact in extremal graph
theory (see [?]), namely, that there is a Kt,t-free graph on n vertices having
Ω(n2−2/(t+1)) edges. In particular, it follows that there are C4-free graphs
on n vertices having at least Ω(n4/3) edges. Similarly, it follows that there is
a coloring of E(Kn) using O(n1/2) colors so that each color class is triangle-
free.

3 Consequences

We now apply Theorem 1.1 and Proposition 2.6 to some interesting fam-
ilies of graphs to obtain the results in the following table. Throughout, we
assume that ∆(G) = d.
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Restriction on j F θ(j,F) Bound on
the union of χ′

j,F(G)

color classes

Planar 5 Subdivisions of K3,3 and K5 1 O(d)

”” 6 ”” 4/3 O(d4/3)

”” 7 ”” 2 O(d2)

”” 8 ”” 4 O(d4)

Outerplanar 3 Subdivisions of K4 and K2,3 1 O(d)

”” 4 ”” 3/2 O(d3/2)

”” 5 ”” 3 O(d3)

Treewidth 4 Subdivisions of K4 1 O(d)
at most 2

”” 5 ” ” 2 O(d2)

Treewidth Edge minimal graphs of
at most k k + 2 treewidth more than k 1 O(d)
for k ≥ 2

k-degenerate k2+k+2
2 Edge minimal graphs that 1 O(d)

graphs are non-k-degenerate

k-colorable k2−k+2
2 Edge-critical (k + 1)- 1 O(d)

graphs chromatic graphs

Genus 2g + 3 Edge minimal graphs of 1 O(d)
at most g genus more than g

Justification for some entries :

1. Planarity restriction :

Note that any subdivision of K5 is a graph on 5+k vertices and 10+k
edges for some k ≥ 0. Similarly, any subdivision of K3,3 is a graph on
6 + l vertices and 9 + l edges for some l ≥ 0. Hence

θ(j,F) = SUPk,l≥0

{

3 + k

10− j + k
,

4 + l

9− j + l

}

.

This value is atmost 1 if j ≤ 5 and is 4/3 for j = 6 and is 2 for j = 7
and is 4 for j = 8. This proves the entries in the table.

2. Outerplanarity restriction :

Note that any subdivision of K4 is a graph on 4+ k vertices and 6+ k
edges for some k ≥ 0. Similarly, any subdivision of K2,3 is a graph on
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5 + l vertices and 6 + l edges for some l ≥ 0. Hence

θ(j,F) = SUPk,l≥0

{

2 + k

6− j + k
,

3 + l

6− j + l

}

.

This value is atmost 1 if j ≤ 3 and is 3/2 for j = 4 and is 3 for j = 5.
This proves the entries in the table.

3. k-degeneracy restriction :

Any connected minimal (with respect to edge deletion) graph of de-
generacy k + 1 is a graph on v vertices for some v ≥ k + 2 and has
minimum degree k+1 and hence has at least v(k+1)/2 edges. Thus,

D ≥ (k + 2)(k − 1)/2 amd hence for j ≤ (k+2)(k−1)
2 + 2 = k2+k+2

2 , we
can apply Corollary 1.2 to deduce that O(d) colors suffice.

4. k-colorability restriction :

Any connected minimal (with respect to edge deletion) graph of chro-
matic number k+1 is a graph on v vertices for some v ≥ k+1 and has
minimum degree at least k and hence has at least vk/2 edges. Thus,

D ≥ (k + 1)(k − 2)/2 and hence for j ≤ (k+1)(k−2)
2 + 2 = k2−k+2

2 , we
can apply Corollary 1.2 to deduce that O(d) colors suffice.

5. treewidth at most k :

It can be shown by a simple inductive argument that any connected
graph on v vertices and having treewidth more than k contains at least
v + k edges provided k ≥ 2. This shows that for j ≤ k + 2, θ(F) ≤ 1.

6. Genus at most g :

By Euler’s polyhedral formula, the number of edges in a graph of
genus at least g + 1 and having v vertices is at least v + 2g + 1. Thus
D(F) = minH∈F (|E(H)− |V (H)|) ≥ 2g+1. Hence, by Corollary 1.2,
for j ≤ 2g + 3, O(d) colors suffice.

4 Extensions to colorings with several families for-

bidden simultaneously

We can also extend our results to more restricted edge colorings where we
require simultaneously for several pairs (ji,Fi) (i = 1, . . . , s) that the union
of any ji color classes has no copy of any member of Fi. The vertex versions
of such colorings were considered by Nes̆etr̆il and Ossona de Mendez in [7]
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for families of H-minor-free graphs. A slightly relaxed notion (where we
don’t insist on properness) was studied by DeVos, et. al. in [3] for families
of H-minor-free graphs. However, we obtain bounds which work for any
arbitrary graph G. We first formally define these colorings.

Definition 4.1 Let P = {(j1,F1), . . . , (js,Fs)} be a set of s ≥ 1 pairs such
that for each i ≤ s, ji is a positive integer and Fi is a family of connected
graphs such that ji < |E(H)| for each H ∈ Fi. We define a P-edge coloring
to be a proper edge coloring of G so that, for each i ≤ s, the union of any ji
color classes does not contain an isomorphic copy of H as a subgraph, for
each H ∈ Fi. We denote by χ′

P(G) the minimum number of colors sufficient
for a P-edge coloring of G.

Note : Similarly, one can define the free version (without explicitly insisting
on properness) of a P-edge coloring and denote the corresponding chromatic
index by fχ′

P(G).

We now present the main result of this section. We skip the proof of the
following theorem as it is based on an application of the Local Lemma and
is similar to the proofs of Theorem 1.1 and Proposition 2.6.

Theorem 4.1 Let P = {(j1,Fs), . . . , (js,Fs)} be a set of s ≥ 1 pairs such
that for each i ≤ s, ji is a positive integer and Fi is a family of connected
graphs such that for each ji < |E(H)| for each H ∈ Fi. Define

θi = θ(ji,Fi) = SUPH∈Fi

(|V (H)| − 2)

(|E(H)| − ji)
, ∀i ≤ s,

Di = D(Fi) = minH∈Fi
(|E(H) − |V (H)|), ∀i ≤ s,

Ci = C(ji,Fi) = 200s · 26ji+6Di · (3ji)
2ji , ∀i ≤ s,

θ = max
i≤s

θi, C = max
i≤s

Ci.

Then, for any graph G of maximum degree d, χ′
P(G) ≤ (Cd)max(θ,1). Also,

in the case of free P-colorings, we have fχ′
P(G) ≤ (Cd)θ with Ci being

redefined as Ci = 7200s · 26(Di+1) if ji = 1.
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By setting Ps = {(1,F1), . . . , (s,Fs)} where Fi is the set of all i colorable
(usual edge coloring) graphs of treewidth i+1, for each i ≤ s, we get upper
bounds on the the type of edge colorings studied by DeVos, et. al. in [3].

Corollary 4.2 For s ≥ 1, let χ′
Ps
(G) denote the minimum number of colors

sufficient to obtain a proper edge coloring of G so that the union of any
j ≤ s color classes forms a subgraph of treewidth at most j. Then, there
exists a constant C = C(s) such that for any graph of maximum degree d,
χ′
Ps
(G) ≤ Cḋ.

Remark : It is essential that s (the number of distinct j’s) of Theorem 4.1
is finite. If we allow s to be infinite, then it is possible that the corresponding
chromatic number number may not be bounded by a function of maximum
degree d alone. For example, if P = {(k− 1, {Pk}) : k ≥ 2} (Pk is a path on
k edges), then χ′

P(Pn) = n for every n ≥ 2 while maximum degree is 2.

Generalized acyclic edge colorings :

This notion was introduced in [5] and is a generalization of the acyclic
edge colorings. For any r ≥ 3, the r-acyclic chromatic index a′r(G) is the
minimum number colors sufficient to properly color the edges of G so that
every k-cycle uses at least min{r, k} colors, for every k ≥ 3. Note that this
specializes to the standard acyclic chromatic index when r = 3. In [?], it is
shown that for every fixed r ≥ 4, a′r(G) = O(d⌊r/2⌋).

This result follows as a corollary of Theorem 4.1. Let l = ⌊r/2⌋ + 1. Let
P be defined by

P = { (2, P3), (3, P4), . . . , (l − 1, Pl), (r − 1, {Ck : k > r}) }.

Here, Pk denotes a path on k edges and Ck denotes a cycle on k edges. The
first l− 2 pairs forbid any path having k ≤ l edges being colored with fewer
than k colors. This, in turn, implies that any cycle Ck on k ≤ r edges is
colored with k colors. The last pair takes care of the remaining cycles. Thus,
every P-edge coloring is also a generalized r-acylic edge coloring. It is easy
to see that

∀k, 3 ≤ k ≤ l, θ(k − 1, Pk) = k − 1 ≤ ⌊r/2⌋,

θ(r − 1, {Ck : k > r}) = max
k≥1

r + k − 2

k + 1
=

r − 1

2
≤ ⌊r/2⌋.

Applying Theorem 4.1, for each fixed r ≥ 3, we have a′r(G) ≤ χ′
P(G) =

O(d⌊r/2⌋). The upper bound is tight upto a constant factor as shown in [?].
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Note that if, instead of defining P as above, we had used the natural
definition of

P = { (2, C3), (3, C4), . . . , (r − 1, {Ck : k ≥ r}) },

we would have only obtained a bound of O(dr−2). In fact, our choice of P
was motivated by the choice of bad events used in [?]. This shows that it
will help to try to upper bound a more restrictive coloring. We formally
state and apply this observation in the following subsection.

5 Improving some of the table entries

For a connected graph H, let dl(H) denote the diameter of the line graph
of H. This means that any two edges in H are part of a path in H on at
most dl(H) + 1 edges. Note that if an edge coloring (proper or free) of G is
such that any path in G on k (for each k ≤ dl(H) + 1) edges uses exactly k
colors, then any copy of H in G must use at least |E(H)| colors. Otherwise,
there must be two edges in a copy of H colored the same and since these
are part of some path on k ≤ dl(H) + 1 edges, this path must use at most
k− 1 colors, a contradiction. This, in turn, implies that for any j < |E(H)|,
any j color classes of this coloring does not have a copy of H. This is a
more restricted coloring than forbidding a copy of H in any j color classes.
But, this may result in a better bound. By applying Theorem 4.1 to this
observation, we get the following refinement of Theorem 1.1 whose proof can
be easily worked out.

Theorem 5.1 Let F be a fixed family of connected graphs and let j be
a positive integer such that j < minH∈F (|E(H)|). Let F = F1 ∪ F2 be
a fixed partition of F where F1 is finite. Let θ2 = θ(j,F2) and θ1 =
maxH∈F1 min(dl(H), θ(j, {H})) where dl(H) is the diameter of the line graph
of H. Then, there exists a constant C = C(j,F1,F2) such that for any graph
G of maximum degree d, we have

(i) χ′
j,F(G) ≤ Cdmax(1,θ1,θ2);

(ii) fχ′
j,F(G) ≤ Cdmax(θ1,θ2);

The motivation for this theorem is that for a suitable choice of the par-
tition F = F1 ∪ F2, it may be that max{θ1, θ2} < θ(j,F) resulting in an
asymptotic improvement of the bound. This is illustrated in the following
two improvements on entries in Table 1 in the previous section.
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1. For the planarity restriction with j = 8, we can improve the upper
bound to O(d2) from the O(d4) presented before. Write F = F1 ∪
F2 where F1 is the set of all subdivisions of K3,3 with at most one
subdivision and F2 = F \ F2. F1 has exactly two members and for
each of them, the diameter of the corresponding line graph L(H) is 2
and hence θ1 = 2. Also

θ(8,F2) = SUPk≥0,l≥2

{

3 + k

10− 8 + k
,

4 + l

9− 8 + l

}

= 2.

Thus, by Theorem 5.1, we can properly color the edges of a graph of
maximum degree d using O(d2) colors so that the union of any 8 color
classes is planar.

2. For the outerplanarity restriction with j = 5, write F = F1∪F2 where
F1 is the set of all subdivisions of K2,3 with at most one subdivision
and F2 = F \F1. For each of the two members in F1, the diameter of
the corresponding line graph L(H) is 2 and hence θ1 = 2. Also

θ(5,F2) = SUPk≥0,l≥2

{

2 + k

6− 5 + k
,

3 + l

6− 5 + l

}

= 2.

Thus, by Theorem 5.1, we can properly color the edges of a graph of
maximum d using O(d2) colors so that the union of any 5 color classes
is outerplanar.

3. If we take F = {Kl} (l ≥ 5) and set j =
( l
2

)

−1, then θ(j,F) = l−2 ≥ 3,
dl(Kl) = 2, F2 = ∅ and θ1 = 2. Theorem 1.1, on the other hand, only
provides a bound of O(dl−2) since θ(j,Kl) = l − 2.

The example 3 given above motivates the following special case of Theorem
5.1 which provides an improvement of Theorem 1.1 for finite families F . It
is explicitly stated below for the sake of completion.

Theorem 5.2 Let F be a finite family of connected graphs and let j be a
positive integer such that j < minH∈F |E(H)|. Let θ1 = θ1(j,F) be defined
as

θ1(j,F) = max{min(dl(H), θ(j, {H}) : H ∈ F}.

Then, there exists a constant C = C(j,F) such that for any graph G of
maximum degree d, we have

(i) χ′
j,F(G) ≤ Cdmax(1,θ1).

(ii) fχ′
j,F(G) ≤ Cdθ1 .
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6 Another strengthening and list analogues

We can further strengthen the asymptotic behavior of the upper bounds
(as a power of d) on optimal free colorings in some cases. Given a pair
(j,F) with usual meanings, define K(H), for each H ∈ F , as any connected
induced subgraph K of H with |E(K)| > j and having the least possible

value of |V (K)|−2
|E(K)|−j . Define F ′ = {K(H) : H ∈ F}. Define θS(j,F) = θ(j,F ′).

Then, any (j,F ′) edge coloring (proper or free) is also a (j,F) edge color-
ing (proper or free). Also, θ(j,F ′) ≤ θ(j,F) and the inequality can be strict
possibly. As a result, one can in fact substitute θS(j,F) in place of θ(j,F)
in Proposition 2.2 and Proposition 2.6.

However, it is easily verified that

|V (K(H))| − 2

|E(K(H))| − j
<

|V (H)| − 2

|E(H)| − j
only if

|V (H)| − 2

|E(H)| − j
< 1.

Hence, the possibility of an asymptotic improvement by using θS(j,F) is
ruled out for proper (j,F) chromatic indices. However, the asymptotic
improvement is possible for upper bounds on free (j,F) chromatic indices.
For example, consider the graph F on [5] = {1, . . . , 5} where the subset
[4] induces a K4 and 5 is adjacent to only 4. Then θ(2, {F}) = 3/5 but
θS(2, {F}) = 1/2. Thus, using θS(j,F) (in place of θ(j,F)) allows us to get
an improved bound of O(d1/2). Also, this strengthening can be extended to
colorings forbidding several pairs of (j,F) simultaneously.

The strengthening of Theorem 5.1 is not always achieved by the strength-
ening outlined above. It was noticed in Section 4 that Theorem 5.1 achieves
asymptotically the bound of O(d2) on χj,Kl

(G) for j =
( l
2

)

− 1. But this
bound is not achieved by the strengthening of this section, since F ′ = {Kl}.

List analogues : It can be verified that our proofs (based on probabilistic
arguments) can be in fact easily be adapted to work for the list analogues of
the (j,F) edge colorings and chromatic indices. In the list version, each edge
is given a list of colors and we are interested in determining the minimum
size of any list which guarantees (irrespective of the actual contents of the
lists) the existence of a (j,F) edge coloring of G. We refer to the minimum
size as the list (j,F) chromatic index of G (or the list P chromatic index of
G). Hence it follows that each of the Propositions 2.2 and 2.6 and Theorems
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4.1, 5.1 and 5.2 holds true even if we replace the chromatic index by its list
analogue in the statement.

7 Conclusions and Open Problems

We considered a generalization of some known edge colorings like acyclic
edge colorings and obtained upper bounds on the chromatic index in terms
of the maximum degree d. We have not tried to optimize the constants
mentioned in the statements and it is very likely that the constants can be
brought down further to small values.

For several (j,F) edge colorings, the bounds are actually O(d), thereby
showing that imposing additional restrictions involving any few color classes
does not necessarily increase the required number of colors asymptotically.
Obviously, these bounds are tight within a constant factor for such colorings.
It would be interesting to establish the tightness (at least within constant
or polylog multiplicative factor) of other super linear upper bounds.

It would also be interesting to obtain constructive (that is, determinis-
tically and algorithmically efficiently realizable) bounds which match the
bounds presented in this paper for some specific pairs (j,F). For some col-
orings, there is an asymptotic gap between existential and deterministically
constructible bounds. For example, acyclic chromatic index of any graph is
at most 16d but the currently known deterministically constructible bound
(see [?]) is only shown to be O(d log d).

However, the recent breakthrough result of Moser and Tardos [?] on a
constructive version of Lovász Local Lemma can be applied to the proof
arguments of Theorem 1.1 resulting in a randomized algorithm with a poly-
nomial expected running time for obtaining a (j,F) edge coloring matching
the upper bound. The details will appear elsewhere.

An interesting direction is to explore improvements in the bounds for ran-
dom graphs or for random regular graphs. Such results have been obtained
for acyclic edge coloring in [8] where it was shown that the acyclic chromatic
index of a random d-regular graph is at most d+ 1 with high probability.

Acknowledgements : We thank an anonymous reviewer whose com-
ments prompted us to include the remark after Corollary 4.2.
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