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We study the relation between the microscopic structure and dynamics and the macroscopic rheological response of glass-

forming colloidal suspensions, namely binary colloidal hard-sphere mixtures with large size asymmetry (1 : 5) that span a large

range of mixture compositions close to the glass transition. The dynamical shear moduli are measured by oscillatory rheology

and the structure and dynamics on the single-particle level by confocal microscopy. The data are compared with Brownian

Dynamics simulations and predictions from mode-coupling theory based on the Percus-Yevick approximation. Experiments,

simulations and theory consistently observe a strong decrease of the intermediate-frequency mechanical moduli combined with

faster dynamics at intermediate mixing ratios and hence a non-monotonic dependence of these parameters but a localization of the

large particles which decreases monotonically as the fraction of small particles is increased. We find that the Generalized-Stokes

Einstein relation applied to the mean square displacements of the two components leads to a reasonable estimate of the shear

moduli of the mixtures and hence links the rheological response to the particle dynamics which in turn reflects the microscopic

structure.

1 Introduction

Dense colloidal suspensions show complex transport phenom-

ena and nontrivial rheological properties1,2. If crystalliza-

tion is avoided (for example due to size polydispersity), the

approach to the glass transition causes an increasingly slow

structural relaxation. The rheological signature of this is vis-

coelasticity3: for an increasingly large time window of the

transient elastic response, the dynamical shear modulus G(t)
remains close to a constant value G∞, the Maxwell plateau

modulus. Only on a time scale τ that grows rapidly as one

approaches the glass transition, G(t) decays to zero and in-

dicates a viscous response. In the corresponding frequency-

dependent storage and loss moduli, G′(ω) and G′′(ω), low-

frequency viscous behavior (G′′(ω) ∝ ω and G′(ω) ∝ ω2 for

ωτ ≪ 1) is followed by an elastic regime (G′(ω) > G′′(ω)
and both nearly constant) at higher frequency.

Glass-forming binary mixtures have attracted growing in-
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terest recently4–11. This is because mixing effects can dras-

tically alter the viscoelastic response of glass-forming sys-

tems. If the constituents are different enough, glasses may

occur where only one component forms a solid matrix, while

the other component undergoes long-range motions4–15. This

links these binary systems to paradigmatic statistical-physics

models for transport in heterogeneous media, such as the

Lorentz gas16,17. As a consequence, an interplay arises be-

tween two distinct types of dynamical transitions18, namely

the glass transition and a dynamical localization transition of

the mobile, small species. The regime where both transitions

are close to each other, i.e., where the smaller species remains

mobile but each component significantly alters the structure

and dynamics of the other19,20, is of special interest because

it reflects situations in realistic application, from cellular flu-

ids21 to complex materials for energy storage18, much better

than the idealized Lorentz-gas model. This in particular ap-

plies to the mechanical properties of such systems, which are

determined both by the crowding imposed on the small parti-

cles and by the transient rigidity of the matrix12–15.

Here we investigate the linear rheology of binary glass-

forming mixtures of hard spheres. This extends our pre-

vious experimental studies on the nonlinear rheology of bi-

nary mixtures12–15 and theoretical work on shear moduli

in two-dimensional model glass formers.22 We determine

the mechanical properties upon changing the composition

at fixed overall volume fraction. This reveals a change in
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the frequency-dependent dynamical shear moduli, the stor-

age modulus G′(ω) and the loss modulus G′′(ω), by orders

of magnitude. Using confocal microscopy and Brownian

Dynamics computer simulations, we relate this pronounced

change in the shear moduli to the local structure and dynamics

as quantified by the radial distribution function, static struc-

ture factor, distribution of Voronoi volumes and mean-squared

displacement. The shear moduli are quantitatively linked to

the microscopic dynamics by the Generalized Stokes-Einstein

(GSE) relation. Both, experiments and simulations, are in

qualitative agreement with predictions of mode-coupling the-

ory (MCT).

2 Methods

The composition of binary hard-sphere mixtures is described

by three control parameters, namely the size ratio δ = ds/dl ≤
1 between the diameters of the small, ds, and large particles,

dl, the total volume fraction ϕ , and the composition xs =ϕs/ϕ ,

with the volume fraction of small spheres ϕs. Then, the total

number density n of a binary sample is given by n= 6ϕ/(π d̄3)
with d̄3 = d3

l /(1− xs + xs/δ 3). Together with the thermal en-

ergy kBT , this fixes the natural unit of the mechanical moduli,

nkBT .

2.1 Experiment

Suspensions of poly-methylmethacrylate (PMMA) particles

sterically stabilized with a layer of polyhydroxystearic acid

(PHS) were prepared in a mixture of cycloheptyl bromide

(CHB) and cis-decalin that closely matches the density and re-

fractive index of the colloids. In the CHB/decalin solvent mix-

ture, the particles acquire a small charge which was screened

by adding 4mM tetrabutylammoniumchloride23. This sys-

tem shows almost hard-sphere behaviour. The large par-

ticles were fluorescently labeled with nitrobenzoxadiazole

(NBD). Binary colloidal mixtures with size ratio δ ≈ 0.2,

fixed total volume fraction ϕ = 0.58 and different mixing

ratios, quantified by xs, were prepared starting from one-

component suspensions. Those were obtained by diluting a

sediment of large particles of mean size dl = 1.76± 0.02 µm

(polydispersity 0.06) and small particles of mean size ds =
0.350 ± 0.004 µm (polydispersity 0.15), respectively. For

the rheological measurements, samples with δ ≈ 0.38 were

also prepared from suspensions with dl = 0.72 ± 0.01 µm

(polydispersity 0.14) and ds = 0.27 ± 0.01 µm (polydisper-

sity 0.12). The values of the diameter and polydispersity of

the particles were determined from the angular dependence

of the scattered intensity and the diffusion coefficient ob-

tained by means of static and dynamic light scattering on

a very dilute colloidal suspension (ϕ ≃ 10−4), respectively.

The average polydispersity of the mixture can be obtained

as σ =
√

[ξs〈d2
s 〉+(1−ξs)〈d2

l 〉]/[ξs〈ds〉+(1−ξs)〈dl〉]2 −1,

with ξs = Ns/N the number fraction of small particles, being

Ns the number of small particles and N the total number of

particles in a mixture. The quantity σ presents a maximum

value at xs ≈ 0.038 for δ = 0.2 and at xs ≈ 0.13 for δ = 0.38.

To estimate the random close packing density, a sediment of

the large particles with dl = 1.76 µm was diluted to a volume

fraction ϕ ≃ 0.4 and imaged by confocal microscopy. The im-

aged volume was partitioned into Voronoi cells and the mean

size of the Voronoi volume per particle calculated. The ratio

of the particle volume to the mean Voronoi volume was taken

as an estimate of the volume fraction of the sample. This was

found to be ϕ = 0.43 which implies a volume fraction of the

sediment ϕ
(rcp)
l = 0.68. This is close to ϕ

(rcp)
l = 0.65, as pre-

dicted by simulations for the current polydispersity24. The

small spheres were too small to be imaged (and hence also not

fluorescently labeled). Thus their volume fraction was chosen

to match the rheological response of the large particles. The

volume fraction of the small particles was adjusted by suc-

cessive dilutions until the shear moduli normalized by nkBT

matched the ones of the large particles. Although their lin-

ear viscoelasticity is identical within experimental uncertainty,

their volume fractions are slightly different since the samples

have different polydispersities. Thus the total volume fraction

ϕ slightly depends on the composition, i.e. xs. Furthermore,

the value of ϕ is known to have some uncertainty25.

Rheology measurements were performed with an

AR2000ex stress controlled rheometer (TA Instruments)

using a cone and plate geometry with 20mm diameter, 2◦

cone angle and 0.054mm gap size. A solvent trap was used

to minimize solvent evaporation. The temperature was set

to 20◦C and controlled within ±0.1 ◦C via a Peltier plate.

The effects of sample loading and aging were minimized by

performing standard procedures. Directly after loading, a

dynamic strain sweep was performed, i.e. we applied an oscil-

latory shear with a frequency ω = 1rad/s and an increasing

strain amplitude until the sample was shear melted. Further-

more, to start with a reproducible initial state, before each

measurement, flow of the sample was induced by oscillatory

shear at a strain amplitude γ = 300%. Shear was applied for

the time needed to achieve a steady-state response indicating

flow, i.e. for G′(ω) and G′′(ω) to become time-independent,

typically 200s. Subsequently, the linear viscoelastic moduli

were measured at 0.1% ≤ γ ≤ 0.5% (depending on sample)

as a function of time to monitor reformation of the structure,

until the moduli reached a time-independent value, i.e. a

reproducible initial state of the sample. The time needed

to reach this state (between 100s and 900s, depending on

sample) was set as the waiting time before commencing a

new measurement after the large amplitude oscillatory shear

test.
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Confocal microscopy experiments were performed using a

VT-Eye confocal unit (Visitech International) mounted on a

Nikon Ti-U inverted microscope. Stacks of slices of 512×512

pixels, corresponding to a size of the x–y plane of about 50×
50 µm2, were acquired using a 100× Nikon Plan-Apo VC oil-

immersion objective and a laser with λ = 488nm. Each stack

was composed of 101 slices which were 0.2 µm apart in z-

direction, leading to an imaged volume of approx. 50× 50×
20 µm3 per stack. Stacks were acquired at a depth of about

30 µm from the coverslip. The time needed to acquire one

stack was approximately 3.8s. Typically, 10 different volumes

were imaged for each sample and time series of 100 stacks

per volume obtained to follow the dynamics of the samples.

The stacks were analyzed to extract particle coordinates and

trajectories using standard routines26. Before each confocal

microscopy experiment was performed, samples were shaken

and the measurements were started after a waiting time equal

to that used in the rheological measurements to start from a

reproducible initial state. Possible effects of aging occurring

during the measurements are assumed to be negligible.

2.2 Simulations

We performed Brownian Dynamics simulations of hard sphere

binary mixtures. They are based on the Langevin equation

m·
d~U

dt
= ~FB +~FH +~FP (1)

where m is the generalized mass/moment of inertia tensor, ~U
is the particle translational/rotational velocity vector, ~FB is the

Brownian force, ~FH is the viscous drag and ~FP is the deter-

ministic non-hydrodynamic force27,28. Since the mass of col-

loidal particles is very small and the Reynolds number is much

smaller than 1, the left hand side of Eq. 1 tends to zero. The

Brownian force ~FB is defined by

〈~FB(t)〉= 0 (2)

〈~FB(t)~FB(t+∆t)〉= 2kBT (3πηsd)Iδ (∆t) (3)

for translational processes29. Here 〈...〉 denotes an average

over all fluctuations, ηs the solvent viscosity, I the isotropic

tensor, ∆t is a time interval and δ is the Dirac delta function.

The hydrodynamic force,

~FH =−3πηsd(~U −〈~U〉) (4)

is considered as a simplified Stokes drag for an isolated parti-

cle where 〈~U〉 is the externally imposed flow field at the par-

ticle center. The interactions between the particles are intro-

duced through the deterministic non-hydrodynamic force vec-

tor ~FP = ~FHS reflecting the hard sphere interaction potential28.

In our simulations, it is implemented using a potential-free

algorithm30, which has been exhaustively used previously to

simulate concentrated colloidal suspensions at rest and under

shear28,31–34. If, after an affine (due to shear) and a random

(due to Brownian motion) displacement, particles i and j, with

diameters di and d j respectively, have come to overlap with an

interparticle separation ∆s, the hard sphere force is given by

~FHS
i( j) = 3πηsdi( j)

∆~ri( j)

τstep
(5)

where ∆~ri( j) is the distance that the particle i (or j) should

be moved back to avoid overlap and puts the two particles at

contact and τstep is a time step in the simulations which was

chosen based on the small particles. Here it is

∆~ri( j) =
d j(i)

di +d j

(

∆s−
di +d j

2

)

~̂r H

(

di +d j

2
−∆s

)

(6)

where the prefactor d j(i)/(di+d j) accounts for the polydisper-

sity, ~̂r is the unit vector connecting the centers of the particles

i and j and H is the Heaviside function. The simulation box

is simultaneously divided into small and large cubic cells with

the length of each cell identical to the small and large particle

radius, respectively. The small particle and large particle cell

lists are separately identified in each time step. Then the algo-

rithm steps through the small and large cells in order to iden-

tify overlaps between small and large neighbors respectively.

The overlaps of small and large particles are evaluated when

stepping through the large cells only. The advantage of this

procedure is threefold: the code efficiently identifies neigh-

bors, avoids omitting particles during the removal of overlaps

and saves computation time by avoiding repetitions in finding

particle overlaps.

The total stress ΣΣΣ is calculated based on the interparticle

forces during each collision. Then the bulk stress is defined as

total stress per unit volume28

〈ΣΣΣ〉=−〈p〉 f I−nkBT I−n〈~x~FHS〉+2ηs(1+
5

2
ϕ)〈E〉 (7)

where 〈p〉 f is the average fluid pressure, −nkBT is the

isotropic pressure due to Brownian motion, 〈~x~FHS〉 repre-

sents the rheological contribution of the stress tensor and

2ηs(1+
5
2
ϕ)〈E〉 is the hydrodynamic contribution to the stress

that reduces to the single particle Einstein correction where

〈E〉 is the rate of strain tensor. Thus the scaled dimensionless

shear stress is Σxy, one of the components in the stress tensor.

It corresponds to the summation of all interparticle distances

moved when fixing particle overlaps and collisions, i.e.

Σxy =−
n

τstep N

N

∑
i=1

rx
i ∆r

y
i (8)

where rx
i is the x-component of the position and ∆r

y
i is the y-

component of the displacement of particle i.
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The simulations were performed with size ratio δ = 0.2 and

volume fraction ϕ = 0.58 to mimic the experimental parame-

ters. Periodic boundary conditions were used in order to avoid

wall effects and reduce finite size effects. To avoid crystalliza-

tion, for xs ≥ 0.9 the polydispersity of the small particles was

chosen to be 0.10, drawn from a discrete Gaussian distribu-

tion, while the large particles were monodisperse for all com-

positions. For xs = 1, the number of particles was N = 15,000,

whilst N = 50,000 for other values of xs. In all the above

cases, the particles where initially randomly placed and al-

lowed to equilibrate for a minimum of 100τ0, i.e. 106 τstep,

where τ0 = d2
i /D0

i with D0
i = kBT/(3πηsdi) the free diffusion

coefficient. The equilibration was considered completed once

the average osmotic pressure had reached a steady state value.

It was checked that this was fulfilled before microscopic struc-

tural and dynamical information was gathered and shear tests

performed.

2.3 Theory

The mode-coupling theory (MCT)35 describes the dynam-

ics of dense liquids in terms of density correlation func-

tions. For a mixture of N particles with species labeled by

Greek indices, the basic quantity is the collective density

correlator Φαβ (q, t) = 〈ρα(~q, t)
∗ρβ (~q,0)〉, where ρα(~q, t) =

∑
Nα
k=1 exp[i~q ·~rα,k(t)] are the density fluctuations to wave vector

~q of the Nα = x̃α N particles of species α . The theory assumes

that the system remains homogeneous and isotropic.

In the MCT framework, one derives an approximate equa-

tion of motion for Φαβ (q, t) that embodies slow dynamics

through a Mori-Zwanzig memory kernel. For overdamped

colloidal dynamics without hydrodynamic interactions,

τ0(q)∂tΦ(q, t)+S(q)−1Φ(q, t)

+
∫ t

0
M(q, t−t ′)∂t ′Φ(q, t ′)dt ′ = 0 (9)

in obvious matrix notation, τ0
αβ (q) = 1/(q2D0

α)δαβ is a di-

agonal matrix of short-time diffusion coefficients and S(q) =
Φ(q,0) is the matrix of partial static structure factors. The

equation is closed in MCT by

Mαβ (q, t) =
n

2q2x̃α x̃β

∫

d3k

(2π)3 ∑
γδλ µ

Vαγδ (~q,~k)Φγλ (k, t)×

×Φδ µ(p, t)Vβλ µ(~q,~k) , (10)

where p = |~q−~k|. The vertices are given in terms of the static

structure functions; introducing the direct correlation function

matrices c(q) = (X−1 − S−1(q))/ρ (with Xαβ = x̃α δαβ ), we

use

Vαα ′α ′′(~q,~k) = δαα ′′(~q ·~k)cαα ′(k)/q

+δαα ′(~q ·~p)cαα ′′(p)/q . (11)

Here, static triplet correlation functions have been neglected.

For details, we refer to the literature36,37.

In studying self-diffusion, also the tagged-particle density

correlation function φ s
α(q, t) = 〈ρs

α(~q, t)
∗ρs

α(~q,0)〉 is of inter-

est, where ρs
α(~q, t) = exp[i~q ·~rs

α(t)] is the density fluctuation of

a tagged particle of species α . In the limit q → 0 one obtains

an expression for the mean-squared displacements (MSD),

δ r2
α(t), of a particle of species α ,

∂tδ r2
α(t)+

d

dt

∫ t

0
m̂s

α(t−t ′)∂t ′δ r2
α(t

′)dt ′ = 6D0
α . (12)

Here, m̂s
α(t) is a memory kernel derived from the one deter-

mining tagged-particle correlation functions. In particular, for

liquid states its integral is finite, so that asymptotically for long

times δ r2
α(t) ∼ 6Dα t with the long-time self-diffusion coeffi-

cient of species α

Dα =
D0

α

1+D0
α

∫ ∞
0 m̂s

α(t)dt
. (13)

In the ideal glass, MCT predicts the MSD to saturate,

∆r2
α(t) → 6r2

loc,α , indicating particle localization to within a

typical localization length given by rloc,α = 1/
√

m̂s
α(t → ∞).

In the MCT approximation the collective density correlation

functions determine the dynamical shear modulus through the

q → 0 limit of the memory kernels appearing in the equation

of motion,

G(t) = nkBT lim
q→0

∑
αβ

x̃α MT
αβ (q, t)x̃β . (14)

Here, MT(q, t) is the transverse-force memory kernel obtained

by replacing in M(q, t) the vector ~q by a vector ~qT perpen-

dicular to ~q and of equal length. In the liquid, integration of

Eq. (14) over time yields the shear viscosity.

MCT describes the transition to an ideal glass state, char-

acterized by a non-decaying contribution of the density cor-

relation functions, called nonergodicity parameters. With

limt→∞ Φ(q, t) = F(q), a positive definite matrix in the ideal

glass, also the long-time limit of the shear modulus becomes

finite, limt→∞ G(t) = G∞. This is the Maxwell plateau mod-

ulus. Close to the glass transition, but on the liquid side, a

slow final decay from G∞ to zero is seen whose time scale

is increasing as one approaches the transition. This approach

hence causes visco-elastic behavior that is typically quantified

by the Fourier transformed complex shear modulus G(ω) =
G′(ω)+ iG′′(ω).
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Equations (9) to (12) were solved numerically using a well

established scheme36. The time-domain equation is solved on

a blockwise regular grid, with a step length that is doubled

every time a new block is entered. This allows to cope with

slow relaxation functions that vary on logarithmic time scales.

Wave numbers are discretized according to qi = (i+ 1/2)δq

with δq = 0.4/dl and i = 1, . . .1000. This ensures that the

shear moduli in the glass, calculated from Eq. (14) as t → ∞,

obey the expected scaling with the particle number density

when crossing over from xs = 0 to xs = 1. The frequency-

dependent shear moduli were obtained from a Fourier trans-

form of the time-domain solution by a simple trapezoidal

method38.

For the static structure factors needed to evaluate the MCT

vertices, we resort to the Percus-Yevick (PY) approxima-

tion39,40. We will refer to the combination of both approx-

imations as PY-MCT in the following. Despite its known

deficiencies, the PY approximation has the advantage of be-

ing parameter-free and available in analytical form. Still, the

quality of this approximation for binary mixtures and in the

parameter range required by MCT, is largely unknown. Our

experiments allow some test of the structure-factor input, as

detailed below. Yet, the influence of approximation errors in

the PY closure on MCT is difficult to estimate.

A well-known error of MCT is in the determination of

the glass-transition volume fraction. For monodisperse hard

spheres, PY-MCT predicts ϕc ≈ 0.516 for the transition point,

while experiments suggest ϕc ≈ 0.58. In order to quantita-

tively compare the dynamic moduli and other dynamical quan-

tities close to the transition, we thus adopt the usual procedure

of using an effective shifted volume fraction in the MCT cal-

culations. Unless noted otherwise, we will compare our exper-

imental data at ϕ = 0.58 with PY-MCT results for ϕ = 0.515.

3 Results and Discussion

3.1 Quiescent Particle Arrangement

The structure of mixtures with different compositions is visu-

alized through snapshots obtained from confocal microscopy

and simulations (Fig.1). The successive dilution of the large

particles can be appreciated in both confocal and simulation

snapshots. At small values of xs the large particles are sur-

rounded by many other large particles. In contrast, at large xs

the small particles closely surround the large particles.

These qualitative observations can be supported by a more

quantitative analysis of the structure of the mixtures, in partic-

ular using the radial distribution function

g(r) =
N(r)

4πr2∆rshn
, (15)

where N(r) is the number of particles in a thin shell of thick-

Fig. 1 Confocal microscopy images (left) and simulation snapshots

(right) of samples with total volume fraction ϕ = 0.58, size ratio

δ = 0.2 and different relative volume fractions of small particles, xs,

as indicated. Note that only small parts of the confocal images are

shown to match the sizes of the particles in the simulation snapshots.
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ness ∆rsh at distance r from a selected particle. The same in-

formation is contained in the static structure factor

S(q) = Φ(q,0) =
1

N

N

∑
j=1

N

∑
k=1

e−i~q·(~r j−~rk) . (16)

From a set of microscopy images, we evaluate the radial dis-

tribution function of the large particles, gll(r), and the corre-

sponding static structure factor Sll(q), whereas the arrange-

ment of the small particles is not accessible due to their small

size (and the absence of fluorescent labelling). In contrast, in

simulations gss(r) and the corresponding Sss(q) can be deter-

mined with high accuracy, but the statistics of gll(r) and Sll(q)
are poor due to the smaller number of large particles. Experi-

ments and simulations therefore complement each other.

The radial distribution functions of the large particles,

gll(r), as obatined from experiments are shown in Fig. 2a. The

gll(r) for xs = 0 is typical of a glass-forming one-component

system with size polydispersity. It shows a pronounced peak

at r ≈ dl corresponding to the first-neighbor shell and rapidly

decaying layering. The simulation data for xs = 0 are in good

agreement with the experimental results. For xs = 0.1, these

features remain essentially unchanged. Upon increasing xs

further, the height of the first-neighbour peak decreases. As

the short-range order of the large particles is destroyed, addi-

tional peaks emerge that correspond to distances r ≈ dl + ds

and dl + 2ds; peaks for further dl + mds (m = 3,4, . . .) can

be identified for xs ≥ 0.7. As more and more large particles

are replaced by small particles, it becomes more probable that

large particles are separated by small particles. Moreover, for

xs = 0.3 one also identifies a bump at r ≈ 2dl+ds that replaces

the one at 2dl for lower xs. This layering beyond two large-

particle distances disappears with increasing xs.

The static structure factor of the large particles, Sll(q), re-

flects the progressive dilution of the large particles indicated

by the decreasing height of the first peak and its shift towards

smaller q (Fig. 2b). To compare Sll(q) from experiments and

simulations with predictions of the Percus-Yevick (PY) ap-

proximation, the PY approximation is based on ϕ = 0.55, i.e. a

volume fraction which is lower than the volume fraction of

the experimental and simulated systems. This is a widely em-

ployed correction for the PY approximation41. The PY ap-

proximation typically overestimates the height of the structure

factor peak compared to experimental data. The heights of

the peaks and their positions agree, except for xs = 0 where

the theoretically predicted peaks are considerably larger and

where a slight mismatch in the length scale of the oscillations

is observed. Furthermore, at small q, where S(q) is connected

to the isothermal compressibility, and large xs = 0.7 and 0.9,

the PY approximation overestimates Sll(0). Nevertheless, for

all xs, the same shift in volume fraction between experiment

(ϕ = 0.58) and theory (ϕ = 0.55) seems to provide satisfac-

tory agreement.
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Fig. 2 (a) Radial distribution function of the large particles, gll(r),
obtained from confocal microscopy for total volume fraction

ϕ = 0.58, size ratio δ = 0.2 and different relative volume fractions

of small particles, xs, as indicated, shifted vertically to avoid

overlap. Open circles represent simulation data for xs = 0. (b)

Structure factor of the large particles, Sll(q), as a function of

dimensionless wave number qdl obtained from confocal microscopy

for ϕ = 0.58, δ = 0.2 and different xs, as indicated, shifted vertically

to avoid overlap. Open symbols represent simulation data for xs = 0,

0.1 and 0.3. The solid lines are Percus-Yevick results for ϕ = 0.55.

The PY approximation is also able to predict radial distri-

bution functions. However, we do not include them in Fig. 2a

for two reasons: for hard spheres polydispersity effects are

much more pronounced in g(r) than in S(q) and, in addition,

for one-component systems with ϕ ≈ 0.6 the g(r) from PY

are known to violate the requirement g(r) ≥ 0. The failure of

PY to reproduce gll(r) well will not affect our comparison of

the dynamical and rheological behaviour as obtained by the-

ory, simulations and experiments since we use the static struc-

ture factor as input for MCT, which is formulated entirely in

the wave-vector domain. Thus, the observed agreement in the

wave-vector domain (Fig. 2b) can form the basis for a later
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Fig. 3 (a) Radial distribution function of the small particles, gss(r),
obtained from simulations for total volume fraction ϕ = 0.58, size

ratio δ = 0.2 and different relative volume fractions of small

particles, xs, as indicated, shifted vertically to avoid overlap.

Simulation data for xs = 0.9 and 1.0 are based on small particles

with a polydispersity of 0.10 to avoid crystallization. (b) Structure

factor of the small particles, Sss(q), as a function of dimensionless

wave number qds from simulations for ϕ = 0.58, δ = 0.2 and

different xs, as indicated, shifted vertically to avoid overlap. The

solid lines are Percus-Yevick results for ϕ = 0.55

.

discussion on whether possible discrepancies between MCT

and simulation as well as experimental results are due to the

PY approximation or are intrinsic to MCT.

The radial distribution functions of the small particles,

gss(r), as obtained from simulations are shown in Fig. 3a. The

evolution of the arrangement of the small particles with in-

creasing xs evidences the progressive crowding of the small

particles, with the growth of the first peak and the appearance

and also growth of higher order peaks. For most of the samples

no peculiar structural arrangements of small and large parti-

cles can be discerned. Only for xs = 0.1 a large distance peak

at r/ds ≈ 6.5 is observed, which could be associated with a

configuration where two small particles are separated by one

large particle. This is probably the only sample where this

correlation is significant: for larger xs the number of small

spheres is so large that these configurations become irrelevant.

Note that for xs = 0.9 and 1.0 a polydispersity of the small

spheres of 0.10 is chosen to avoid crystallization, which leads

to a broader and smoother first peak.

Fig. 3b shows the small-particle static structure factors,

Sss(q), obtained from simulations. Similar to the case of the

large spheres, gss(r) and Sss(q) show the progressive crowding

of the small spheres with increasing xs, resulting in increas-

ingly pronounced peaks. A comparison with PY calculations

with ϕ = 0.55 shows satisfactory agreement. Thus, it is justi-

fied to apply this approximation also to calculate the structure

factors of the small particles and use them as input for MCT.

3.2 Voronoi Volume

In order to better quantify the local packing of the large

and small particles as a function of mixing, we construct a

Voronoi tessellation of the simulation volumes42 which yields

the Voronoi volume Vvor of each individual particle. The dis-

tributions of these volumes for the small and large particles

are presented in Fig. 4.

For both species, with increasing xs, the distributions move

to smaller volumes Vvor, i.e. the average Voronoi volume 〈Vvor〉
becomes smaller and hence the local volume fraction ϕloc =
(4π/3)d3

i /Vvor larger and the packing tighter (Fig. 4c). This

supports our finding that, with increasing xs, the small parti-

cles form increasingly tight cages around the large particles

but also around other small particles. The particularly tight

cage of small particles around large particles is also reflected

in the much higher local volume fraction of the large particles

as compared to the small particles.

The distribution of Voronoi volumes of the large particles

becomes very narrow for large xs. Interestingly, with increas-

ing xs the width of the distribution of Voronoi volumes of the

small particles first becomes narrower, up to xs = 0.7, and

then broadens again. This suggests that around xs the envi-

ronment of small particles is most homogeneous. This is con-

sistent with the radial distribution function gss(r) which, for

xs = 0.7, shows a modulated second peak and the most pro-

nounced oscillations suggesting relatively high homogeneity

(Fig. 3a). Moreover, the relatively pronounced peak of gll(r)
at r = dl +ds for xs = 0.7 indicates a well-developed layer of

small particles surrounding each large particle whereas differ-

ent arrangements seem to simultaneously exist for other com-

positions.
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Fig. 4 Probability density function of Voronoi volumes p(Vvor)
from simulations for total volume fraction ϕ = 0.58, size ratio

δ = 0.2 and different relative volume fractions of small particles, xs,

as indicated, for (a) small and (b) large particles. (c) Mean local

volume fraction 〈ϕloc〉 of the small and large spheres as well as their

number average as a function of the composition, i.e. xs. The dashed

line indicates the total volume fraction ϕ = 0.58.

3.3 Linear Viscoelasticity

We next discuss the frequency-dependent shear moduli G′(ω)
and G′′(ω). The results are presented in terms of a dimen-

sionless frequency, Peω = 3πηsω d̄3/(kBT ), the oscillatory

Péclet number. It quantifies the ratio between the timescales

determined by the oscillatory perturbation, tω ∼ 1/ω , and

the average Brownian diffusion time 〈τ0〉. Fig. 5 shows the

xs dependence of the storage modulus G′(xs) in units of the

thermal energy per average particle volume, i.e. nkBT , at

fixed Peω = 0.4. The normalization ensures that the limiting

cases xs = 0 and xs = 1, both representing one-component sys-

tems, are characterized by about the same value, G′ ≈ 45nkBT

Fig. 5 Storage modulus G′ as a function of the total volume

fraction of small particles, xs, for size ratios δ = 0.2 and δ = 0.38

(as indicated) at fixed oscillatory Péclet number Peω = 0.4 and total

volume fraction ϕ = 0.58 (experiments and simulations) and

ϕ = 0.515 (PY-MCT). Dashed lines represent the true plateau

modulus G∞ along the PY-MCT glass transition for δ = 0.2 where

the two branches correspond to two kinds of glasses.

in the present case, by removing a trivial increase in G′ by

about a factor 110 because n varies by a factor 1/δ 3. A

pronounced minimum is seen in G′/(nkBT ) as a function of

xs. For δ = 0.2, it is lowered by more than one decade with

the minimum around xs = 0.3. Experiments and simulations

show qualitative agreement. The same trend is predicted by

PY-MCT, although the theory somewhat underestimates the

magnitude of the decrease. It is interesting to note that the

non-monotonic trend of G′(xs) can be connected to structural

changes manifested in the gll(r) of the large spheres; the cage

of large particles is first disrupted by the intercalation of small

particles and then replaced by a cage of small particles. For

δ = 0.38 the decrease is less pronounced, as previously re-

ported12, which is attributed to the reduced ability of the small

particles to penetrate the cage of large particles. Experimental

results and MCT predictions show a satisfactory agreement.

PY-MCT predicts the appearance of multiple glass states in

the present system10. If the length scales associated to amor-

phous structures formed by the large and the small particles

are sufficiently different, in a mixture of both, the transition

between the glassy structures Formed at xs = 0 and xs = 1,

respectively, is not continuous but discontinuous in the domi-

nant length scale as manifested by a discontinuous change in

the structure factor as xs is changed. In the linear rheology, this

is evidenced by a sudden change in G∞ upon increasing ϕ in

a glass at intermediate xs. In Fig. 5 (dashed lines), the values
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Fig. 6 Dynamical storage modulus G′ and loss modulus G′′ as a

function of the oscillatory Péclet number Peω for a total volume

fraction ϕ = 0.58, size ratio δ = 0.2 and different relative volume

fractions of small particles, xs, as indicated, as obtained from

experiment (filled and open diamonds and inverted triangles) and

simulations (filled and open stars). Solid and dashed lines: PY-MCT

result for ϕ = 0.515.

of the true plateau modulus G∞ in the idealized limit Peω → 0

reflect this prediction, i.e., there are two possible values in

the range 0.4 . xs . 0.7, one corresponding to lower packing

fraction and the large-particle dominated glass (dashed line

extending from xs = 0), one corresponding to higher packing

fraction and the small-particle dominated glass (line extending

from xs = 1). The repulsive glass of large particles at xs = 0

softens upon addition of small particles (the value of G∞ de-

creases with increasing xs). In contrast, the glass of small par-

ticles at xs = 1 instead stiffens upon addition of large parti-

cles. Whereas G∞(xs) shows a splitting into two branches, at

finite Peω , PY-MCT predicts that the moduli show a continu-

ous variation which, as discussed previously, is in agreement

with experimental and simulated data.

A more complete understanding of the rheological effects of

mixing can be obtained from the frequency-dependent mod-

uli G′(ω) and G′′(ω), shown in Fig. 6. Overall, the G′(ω)
curves reproduce the trends discussed above in connection

with Fig. 5. The experimental data for xs = 0 and xs = 1

agree within their uncertainty after normalization (Fig. 6a),

confirming the expectation that both constituents behave as

hard spheres with a corresponding volume fraction. For xs = 0

and 0.1 we observe G′(ω) > G′′(ω) in the measured fre-

quency range, i.e. a transient elastic response. For xs = 0.3
and xs = 0.5, G′(ω) has decreased as discussed above and the

system has become softer and more fluid with G′(ω)≈G′′(ω)
in the same frequency window. Increasing xs further, a solid-

like response with G′(ω)> G′′(ω) in the measured frequency

range is recovered. Note that the range of Peω observed in ex-

periments increases with xs which is due to the larger content

of small particles with their larger energy density and conse-

quently a larger rheological signal with better statistics.

The PY-MCT and BD simulation data shown in Fig. 6 ex-

tend the experimentally accessible Peω range. They agree well

with the experimental data for xs < 0.7, whereas for xs = 0.7
and xs = 0.9 agreement is less satisfactory. PY-MCT pre-

dicts the mixture to be more strongly fluidized than observed

in our experiments which is in agreement with the stronger

elastic response seen in experiments for larger Péclet num-

bers only. In contrast, agreement with simulations is more

satisfactory, even though the moduli show a more pronounced

fluid-like response for all values of xs. The discrepancy be-

tween experimental, theoretical and simulation results at large

xs might be due to several reasons. Due to the different poly-

dispersities of the two particle species (0.06 and 0.15 for the

large and small particles, respectively), the effects of poly-

dispersity might change with xs which is neither accounted

for in the theory nor in the simulations. The different poly-

dispersities together with the adjusted equivalent rheological

response (Sec. 2.1, Fig. 6a) imply slightly different volume

fractions; the volume fraction of the smaller particles is ex-

pected to be larger. This might lead to a slight increase of the
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volume fraction with xs. PY-MCT predicts a strong decrease

with increasing xs
10. Our experimental data suggest that PY-

MCT overestimates this decrease, which might be related to

the use of the PY approximation for S(q) that becomes worse

for large xs (Fig. 2b). In addition to an xs dependence of the

volume fraction, in the experiments the absolute value of ϕ
is known to have some uncertainty, typically at least 3 %25,

such that the actual volume fraction is expected in the inter-

val 0.56 . ϕ . 0.60. The simulations, which show an even

more pronounced fluid-like response than PY-MCT, suggest

that the experimental volume fraction might be slightly higher

than assumed. Given the vicinity to the glass transition, even

small variations in ϕ will have large effects, in particular on

the dynamics.

Close to the fluid–glass transition, the loss modulus G′′(ω)
predicted by PY-MCT displays a broad minimum in the

present frequency range. However, for xs ≥ 0.5 they display

an S-shape of G′′(ω). This shape indicates the superposition

of two broad structural-relaxation peaks. This is attributed to

the vicinity of two different glasses, dominated by the frozen

dynamics of the small and large particles respectively, as pre-

dicted by MCT and observed experimentally10,11. The re-

laxation of glasses dominated by small and large particles at

large and small Peω respectively, lead to the observed S-shape

of G′′(ω). Furthermore, the storage modulus G′(ω) can no

longer be described by an approach to a single Maxwell-type

plateau but two plateau regions. These plateau regions are

not very pronounced in the data since the packing fraction is

significantly below the glass-transition packing fraction pre-

dicted for these xs values. Nevertheless, the experimental and

simulation data for xs = 0.5 are in remarkable agreement with

the broad spectrum predicted by PY-MCT. For a more detailed

test of the predictions for the dynamical shear moduli, a larger

frequency window and further volume fractions need to be in-

vestigated.

3.4 Quiescent Particle Dynamics

The dynamics is quantified by the mean-squared displacement

(MSD)

δ r2
α(t) = 〈(rα,i(t, t0)− rα,i(0, t0))

2〉t0,i , (17)

where t is the delay time, t0 a time during the particle tra-

jectory, 〈...〉t0,i indicates an average over all times t0 and all

particles i and α = s, l refers to the small and large particles,

respectively. Fig. 7 shows results obtained from experiments,

simulations and theory. In general the data show the typi-

cal signature of slow structural relaxation, that is a cross-over

from short-time diffusion to a broad time window with a sub-

linear increase before diffusion is reestablished at long times.

The sublinear increase indicates subdiffusive dynamics. It is

due to caging of particles by either large or small particles

which leads to a transient particle localization on a character-

istic length scale.

We first discuss the experimental and simulation results for

the large particles (Fig. 7a). Both data sets show similar qual-

itative trends. The short-time dynamics monotonically de-

creases with increasing xs. In contrast, the localization length

and the reestablished diffusive dynamics at intermediate and

long times, respectively, are observed to first increases and

then decrease with the particles being most mobile for xs ≈
0.3. This is attributed to the caging transition during which

a looser cage of large particles first is destroyed by the inter-

calation of small particles leading to a very loose first shell

of neighbours at intermediate xs. Then a successively tighter

cage of small particles is formed with the small particles pack-

ing very closely around the large particles (Fig. 3). This se-

quence is consistent with the trend of the Voronoi volume with

increasing xs (Fig. 4). The slowdown is more pronounced in

the experimental data with well-developped plateaus, while

the simulations extend to the long-time diffusive regimes. This

discrepancy, again, might be due to slightly different volume

fractions, polydispersities and/or their dependencies on xs and

as such this is consistent with our findings for the linear vis-

coelasticity (see discussion in Sec. 3.3).

Fig. 7b presents a comparison between PY-MCT and sim-

ulation data, while the comparison with experiments is indi-

rect through Fig. 7a. The experiments and simulations were

performed with a volume fraction ϕ = 0.58, whereas the PY-

MCT calculations are based on a volume fraction ϕ = 0.515,

in order to compare states that are similarly close to the

glass transitions. Using the PY structure factor, MCT is

known to overestimate the tendency to glass formation in one-

component hard-sphere systems and predicts a glass transi-

tion at ϕ ≈ 0.51635. Thus for the PY-MCT calculations we

use a lower volume fraction, ϕ = 0.515, and assume the shift

in volume fraction between theory and experiment to be in-

dependent of xs. With this shift in ϕ , PY-MCT captures the

decrease of the localization length of the large particles with

increasing xs (Fig. 7b). But for long times the agreement of

PY-MCT with the experimental and simulation results is poor.

In contrast to the experiments, PY-MCT predicts diffusive dy-

namics at large xs. Compared to simulations, the dynamics

are significantly slower. This has already been reported for

one-component systems43; close to the glass transition, MCT

is known44 to predict a much slower growth of the MSD than

found in simulations, even after adjusting the packing fraction.

At long times, furthermore, the trend with increasing xs is not

reproduced by PY-MCT. Comparing with previous MCT re-

sults10, one might expect that at higher total volume fractions

a better agreement for the trend of the long-time dynamics

could be obtained. However, this would imply that the one-

component dispersions of large and small particles are con-

siderably deeper in the glass compared to the simulations and
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(a)

(b)

(c)

Fig. 7 Mean-squared displacement (MSD), δ r2
α (t), as a function of

delay time t for size ratio δ = 0.2 and different relative volume

fractions of small particles, xs, as indicated, for (a) large particles as

obtained from experiments and simulations, (b) large particles as

obtained from simulations (same data as in (a)) and PY-MCT, (c)

small particles as obtained from simulations. The experiments and

simulations were performed at a total volume fraction ϕ = 0.58,

whereas PY-MCT results are shown for two different total volume

fractions, ϕ = 0.515 and 0.46 (dotted and solid lines, respectively).

The MSD δ r2
α (t) is normalized by the corresponding particle

diameter dα and the time t by the Brownian time of the

corresponding particle in a dilute suspension, τ0,α .

experiments. Thus, simulations and experiments do not sug-

gest to use a higher total volume fraction for the PY-MCT. In

contrast, if the total volume fraction is reduced to ϕ = 0.46,

PY-MCT better captures the magnitude of the MSD obtained

by simulations (Fig. 7b). However, as expected, the trend of

the diffusivity with xs does not agree with the simulation and

experimental results. This decrease in ϕ accounts for a well-

known issue of MCT in treating the relaxation dynamics of a

tagged particle at small q, where the relaxation times are over-

estimated43.

The small particle dynamics obtained from simulations

(Fig. 7c) show diffusive behavior at long times for all com-

positions with the long-time diffusion coefficient decreasing

and the inflection point at intermediate times becoming more

pronounced with increasing xs. Both are consistent with a

progressive tightening of the cage of small particles as indi-

cated in the structural evolution represented by g(r) and S(q)
(Fig. 3), as well as the decrease of the Voronoi volume (Fig. 4).

In the simulations and MCT calculations, solvent-mediated

hydrodynamic interactions (HI) are neglected. Close to the

glass transition the influence of HI on the long-time dynam-

ics is unclear, whereas it is known to slow down the short-

time diffusion. This has been shown for various size ratios

and compositions, based on resummation techniques for the

hydrodynamic scattering series and on Stokesian-dynamics

simulations45–47. They suggest that the dynamics in a one-

component suspension with a volume fraction comparable to

ours is slowed down by a factor of 5 to 10, and slightly less

in binary mixtures (cf. Fig. 3 of Ref.46). Thus HI could affect

the Brownian time τ0 and hence lead to a shift of the time axis

in Fig. 7.

3.5 Shear Moduli Obtained through the Generalised

Stokes-Einstein Relation

The shear moduli reported in Fig. 6 represent an average rheo-

logical response of the mixture and do not provide information

about the contributions of the small and large particles, respec-

tively. In contrast, the MSDs of the small and large particles

have been determined individually by simulations. The Gen-

eralised Stokes-Einstein (GSE) relation provides an approxi-

mate way to link the viscoelastic moduli to the MSD48:

G∗(ω) =
4kBT

3πiωdF{〈∆r2(t)〉}
(18)

where F{...} indicates a Fourier transform. For the one-

component suspensions (xs = 0 and 1), the moduli calculated

using the GSE relation agree with the macroscopic moduli

(Fig. 8a). This is expected as the GSE relation has been well

established for one-component suspensions. However, here

it needs to be extended to mixtures. Based on the MSDs

of the large and small particles, the corresponding moduli

1–14 | 11

Page 11 of 16 Soft Matter

So
ft
M
at
te
rA

cc
ep
te
d
M
an
us
cr
ip
t

P
u
b
li

sh
ed

 o
n
 1

3
 F

eb
ru

ar
y
 2

0
1
9
. 
D

o
w

n
lo

ad
ed

 b
y
 M

ac
q
u
ar

ie
 U

n
iv

er
si

ty
 o

n
 2

/1
4
/2

0
1
9
 1

0
:2

0
:0

9
 A

M
. 

View Article Online

DOI: 10.1039/C8SM01349G



x
s
= 0 & 1

x
s
= 0.1

x
s
= 0.3

x
s
= 0.5

x
s
= 0.7

x
s
= 0.9

G
'/
n
k

B
T

 ,
 G

''/
n
k

B
T

Peω

(a)

(b)

(c)

(d)

(e)

(f)

10
-1

10
0

10
1

10
2

10
3

10
4

 

 10
-1

10
0

10
1

10
2

10
3

10
4

 

 10
-1

10
0

10
1

10
2

10
3

10
4

 

 10
-1

10
0

10
1

10
2

10
3

10
4

 

 10
-1

10
0

10
1

10
2

10
3

10
4

 

 

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

10
4

 Big Particles

 Small Partices

 Mixed

 G'  Sim

 G'' Sim

 

 

GSE

Fig. 8 Dynamical storage modulus G′ and loss modulus G′′ as a

function of oscillatory Péclet number Peω for a total volume fraction

ϕ = 0.58, size ratio δ = 0.2 and different relative volume fractions

of small particles, xs, as indicated, as obtained from simulations.

Filled (open) hexagons represent the ‘macroscopic’ G′ (G′′) of the

mixture (same data as in Fig. 6), solid lines the G′ and dashed lines

the G′′ of: (blue) the small particles, (green) the large particles, all

obtained through the Generalized Stokes-Einstein relation, and (red)

their number-average

G′(ω) = (ns/(ns+nl))G
′
s(ω)+(nl/(ns+nl))G

′
l(ω) (and similar for

G′′(ω)).

of the large, G′
l(ω) and G′′

l (ω), and small particles, G′
s(ω)

and G′′
s (ω), are calculated for each composition xs. Based on

these moduli, the number-averaged moduli are determined ac-

cording to G′(ω) = (ns/(ns+nl))G
′
s(ω)+(nl/(ns+nl))G

′
l(ω)

and similar for G′′(ω) (Fig. 8). This procedure yields rea-

sonable agreement between the directly determined ‘macro-

scopic’ moduli and the moduli calculated via the GSE relation

from the microscopic dynamics.

Note that even for xs = 0.1, the number fraction of small

particles is huge, ns/(ns+nl)> 0.93. Nevertheless, due to the

much larger moduli of the large particles, G′
l(ω)≫G′

s(ω) and

G′′
l (ω)≫ G′′

s (ω), the large particles’ contribution to the mod-

uli is noticeable for xs < 0.3. Beyond this composition, how-

ever, the number fraction of the large particles becomes so

minute that the response is dominated by the small particles

and the number-averaged moduli approach those obtained for

the small particles. Although the range 0.1 ≤ xs ≤ 0.9 implies

that we only examined suspensions with a large number frac-

tion of small particles, the agreement indicates that the pro-

posed procedure is appropriate. Hence the macroscopic mod-

uli of mixtures can be estimated by the number average of the

moduli of the individual species that can be obtained through

the GSE relation and hence are based on the microscopic dy-

namics.

3.6 Osmotic Pressure

The osmotic pressure is obtained as the average of the diago-

nal terms of the stress tensor. Fig. 9 reports simulation results

for the osmotic pressure of the mixtures as a function of xs.

It shows a non-monotonic trend with a minimum at xs = 0.1.

This trend resembles that of the number-averaged local vol-

ume fraction 〈ϕloc〉 (Fig. 4c). Thus, based on the Voronoi

volume, the partial osmotic pressures of the small and large

particles were calculated using the Carnahan-Starling equa-

tion49 Πα/nα kBT =(1+〈ϕloc,α〉+〈ϕloc,α〉
2−〈ϕloc,α〉

3)/(1−
〈ϕloc,α〉)

3, with α = s, l and nα as well as 〈ϕloc,α〉 depending

on xs. Neither the number nor the volume average of the par-

tial osmotic pressures of the two species is equivalent to the

total osmotic pressure obtained from the simulations. This

indicates the presence of collective effects, i.e. the non-ideal

mixing of the two species. If non-ideal mixing effects are

taken into account50, indeed the total osmotic pressure Π is

in almost quantitative agreement with the simulation results

(Fig. 9).

The non-monotonic trend of the total osmotic pressure Π

as a function of xs is similar to the dependence of the stor-

age modulus G′ (Fig. 5). Both trends can be related to the

caging transition manifested in the gll(r) of the large particles,

in which the cage of large particles is first disrupted by the

intercalation of small particles and then replaced by a cage of

small particles.
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Fig. 9 Total osmotic pressure Π/nkBT as a function of the relative

volume fraction of small particles, xs, for total volume fraction

ϕ = 0.58 and size ratio δ = 0.2 as directly obtained from

simulations and calculated according to Ref. 50 based on the Voronoi

volumes. The partial osmotic pressures of the small, Πs, and large

particles, Πl, are also shown .

4 Conclusions

We performed confocal microscopy and rheology experiments

as well as BD simulations and MCT calculations on binary

mixtures of quasi-hard spheres. Whereas the total volume

fraction ϕ = 0.58 and size ratio δ = 0.2 were kept constant,

the relative volume fraction of small particles, xs, was var-

ied. The effect of the fraction of small particles on the lin-

ear rheological response as well as the structure and dynam-

ics on the individual-particle level was determined. Upon in-

creasing the fraction of small particles from xs = 0.0 to about

0.5, we observe an intercalation of small particles into the

cages of large particles which disrupts the cages and also re-

duces the mean size of the cages. This leads to changes in

the dynamics, namely an increase of the long-time diffusiv-

ity of the large particles. And it also affects the rheological

response which shows a softening of the glass, if probed at

fixed reduced frequency. Further increasing xs towards unity,

the caging by small particles becomes tighter. The long-time

diffusivity starts to decrease again. Correspondingly, the sys-

tem again becomes less fluid and the reduced shear modulus

returns to its one-component value. Therefore, changing xs

from 0 to 1, we observe a transition in the caging mechanism,

from caging by large particles to a softening of the cage and

a subsequent caging by small particles, which results in the

long-time diffusivity and the reduced shear modulus both dis-

playing a non-monotonic behaviour as a function of xs with

a pronounced minimum. On the other hand, the progressive

trapping by the small rather than the large particles results in

a monotonic decrease of the localization length of the large

particles observed at intermediate delay times.

These trends are consistently observed in the experiments,

simulations and PY-MCT. However, we could not achieve a

quantitative agreement in all aspects. In both, the dynamics

and the shear moduli, we observe a more pronounced glassy

behavior in the experiments, which might be caused by a mis-

match of the total volume fractions, namely a slightly higher

volume fraction in the experiments. Different polydispersi-

ties as well as xs dependences of the polydispersity and total

volume fraction might also play a role. Furthermore, an over-

estimated change in the glass transition point with xs and the

neglected hydrodynamic interactions in the simulations and

MCT might contribute to the discrepancies.

We quantitatively linked the shear moduli to the single-

particle dynamics using the Generalized Stokes-Einstein re-

lation. The simulation results suggest that, despite the non-

equilibrium conditions, the number average of the moduli of

the two components, as obtained through the GSE relation,

represents the macroscopic moduli. Thus, a direct link be-

tween the dynamics on an individual-particle level and the

macroscopic bulk shear moduli exists. In addition, this link

provides a measure to estimate the contributions of the two

species to the rheological response. Similarly, the total os-

motic pressure of the mixtures has been linked to the contri-

butions of the two components with their partial osmotic pres-

sures determined from their Voronoi volumes.
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We determine the contributions of each particle species to the macroscopic 

rheology of highly asymmetric binary colloidal mixtures.
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