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This paper deals with the application of universal kriging to interpolate water table elevations from
their measurements at random locations. Geographic information system tools were used to generate the
continuous surface of water table elevations for the Carlsbad area alluvial aquifer located to the southeast
of New Mexico, USA. Water table elevations in the 38 monitoring wells that are common to 1996 and 2003
irrigation years follows normal distribution. A generalized MATLAB� code was developed to generate
omni-directional and directional semi-variograms (at 22.5◦ intervals). Low-order polynomials were used
to model the trend as the water table profile exhibits a south-east gradient. Different theoretical semi-
variogram models were tried to select the base semi-variogram for performing geostatistical interpolation.
The contour maps of water table elevations exhibit significant decrease in the water table from 1996 to
2003. Statistical analysis performed on the estimated contours revealed that the decrease in water table
is between 0.6 and 4.5 m at 90% confidence. The estimation variance contours show that the error in
estimation was more than 8 m2 in the west and south-west portions of the aquifer due to the absence of
monitoring wells.

1. Introduction

Successful management of groundwater resources
using numerical models requires knowledge of
spatial distribution of hydraulic heads, aquifer
parameters and other input data (Kumar and
Ramadevi 2006). Geostatistical techniques play a
vital role in sustainable management of ground-
water system by estimating the model input
parameters at regular grid points from their mea-
surements at random locations (Kumar 2007).
Geostatistics is a collection of techniques for

solving estimation problems involving spatial vari-
ables (Journal and Huijbregts 1978). It offers a
variety of tools including interpolation, integration
and differentiation of hydro-geologic parameters to
produce the prediction surface and other derived
characteristics from measurements at random loca-
tions (ASCE Task Committee 1990a). Geostatis-
tical techniques (such as kriging, co-kriging and
universal kriging) have the capability of producing
a prediction surface, and also provide some mea-
sure of capability of these predictions (Johnston
et al 2001). The spatial variability of the random
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variable is characterized by co-variance or semi-
variogram functions, which are the key elements
in estimation techniques (Gundogdu and Guney
2007). ArcGIS provides a variety of tools (such as
Spatial Analyst R© and Geostatistical Analyst R©) in
order to explore spatial data, evaluate the predic-
tion uncertainty and create surfaces for efficient
decision making in geo-hydrology (Johnston et al
2001).

Application of universal kriging (UK) to interpo-
late water table altitudes for the Ogallala aquifer
in Kansas during 1978 was studied by Dunlap and
Spinazola (1984). A total of 1859 data points were
used to construct the kriged surface of water lev-
els for 1978 and an average period of 1978–1980.
An estimated trend in the data led to the appli-
cation of UK using the residual approach. The
centre of section technique was used to construct
maps of saturated thickness of the aquifer from the
kriged water table and bed rock altitude estimates.
Application of UK to interpolate water levels and
hydraulic conductivities from their measurements
at random locations for the Potomac–Rariton–
Magothy aquifer system in central New Jersey was
studied by Pucci and Murashige (1987). Direc-
tional semi-variograms were developed by dividing
the area surrounding each interpolation point into
four quadrants. A computer program was used to
generate the empirical semi-variogram and cross-
validation statistics. Based on the prediction error
map, authors have suggested the areas of high-
est priority for additional data collection. Appli-
cation of UK to interpolate the mean annual
precipitations from the data at 362 meteorological
stations in Slovenia during 1961–1990 was studied
by Kastelec and Koŝmelj (2002). The study area
was divided into two parts based on the rain gauge
density map. Two perpendicular axes with maxi-
mum difference in spatial continuity were obtained
from the generated variogram maps using Gstat
2.0 g program. The effect of influential surround-
ing (defined by an ellipse) on the kriged variance
was investigated. The quality of kriged predictions
was presented in the form of histogram of resid-
uals obtained from cross-validation. The authors
observed that predictions in the eastern part of
Slovenia were more reliable due to a higher den-
sity of meteorological stations to characterize the
spatial variability. The UK methodology for esti-
mating the gradient of head from scattered data
was illustrated by Igúzquiza and Olmo (2004).
Hydraulic head data from 43 measurements in the
Vega de Granada aquifer in southern Spain was
considered for the analysis. Gradients were esti-
mated in particular directions and the results were
presented in the form of maps of maximum and
mean gradient for the whole aquifer. Every esti-
mated map was provided with a standard error

map to show the reliability of the estimation. The
method of UK to spatially analyse the ground-
water levels for the Musafakemalpasa left bank
irrigation scheme in Turkey was presented by
Gundogdu and Guney (2007). The study was
aimed at finding out the best semi-variogram with
a linear trend that resulted in acceptable results
in predicting the water table values based on the
monthly observation data for 2002. Normality of
the measured dataset was checked from the skew-
ness values of the histogram. Log transformation
was used to adjust the water table values to normal
distribution. Results of the least significant differ-
ence (LSD) test estimated that the nature of the
semi-variogram has almost insignificant effect in
predicting the water table surface. Kumar (2007)
applied UK to generate the contour map of ground-
water levels to a command area in northwestern
India. Water table elevations from the 143 obser-
vation wells during September 1990 were used
to prepare experimental semi-variograms using a
FORTRAN code. The trend order was estimated
by the cross-validation procedure using residual
approach. The UK-interpolated water levels were
then compared by inverse distance weighted esti-
mates. Normality of the measured water levels was
checked using chi-square goodness of fit test. Areas
prone to water logging were generated by combin-
ing the kriged surface with the ground elevation
map. The author concluded that the UK-predicted
groundwater levels at the monitoring well loca-
tions satisfactorily matched with the observed
levels.

Geographic Information System (GIS) is widely
used to collect, store, retrieve and analyse spatially
distributed hydro-geologic data. However, applica-
tion of GIS tools to generate the prediction sur-
face and error in prediction is limited especially
when a trend in the dataset is observed. This is
because, identifying the two perpendicular axes
with maximum difference in semi-variogram val-
ues is difficult. This paper presents the use of
GIS tools to generate the water table surface and
the error in estimation from randomly measured
groundwater levels when the regionalized variable
exhibits a trend. Geostatistical Analyst R© tool in
ArcGIS is used to explore the spatial variability
in water table elevations for the Carlsbad area
alluvial aquifer located in south-east New Mexico.
Water table elevation data at the 38 monitor-
ing wells that are common to 1996 and 2003
datasets are considered for the analysis. A gen-
eralized MATLAB R© code is developed to gen-
erate omnidirectional (by ignoring the direction)
and directional semi-variograms (at 22.5◦ inter-
vals) for analysing the trend in the datasets.
Different theoretical variogram models (including
spherical, Gaussian and exponential) were tried
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to select a suitable base model that satisfies the
statistical conditions. Finally, the contour map of
water table elevations and the error in predic-
tion surface are prepared to infer on the spatial
variation of groundwater table in the region.
A statistical analysis on the interpolated water
levels was performed during 1996 and 2003 to
comment on the temporal variation in the water
table.

2. Methodology

Kriging is an interpolation technique that uses
observations z(xi) at location xi to estimate the
values z(x0) at point x0, where the observation
is not available (Kumar 2007). The random vari-
able z at any location can be written as the sum
of a deterministic component called trend m(x)
and a stochastic error component R(x). For any
distance vector h, the increment z(x + h) − z(x)
has zero expectation and finite variance, which
is independent of location x (intrinsic assump-
tion) (Journal and Huijbregts 1978). The vari-
ance of this increment defines semi-variogram
given by:

γ =
1

2
Var [z (x + h) − z (x)] . (1)

The experimental semi-variogram (by grouping the
data pairs according to their distances) from the
measured data points can be obtained by:

γ∗ (|h|) =
1

2N (|h|)

×

N(|h|)
∑

i=1

[z (xi + h′) − z (xi)]
2
, (2)

where z(xi) is the measured value at location xi;
z(xi +h′) is the measured value at location xi +h′;
|h| is the average distance between the pairs of data
points that belongs to a distance class; N(|h|) is
the number of pairs of data points that belongs to
the distance interval represented by h.

Linear geostatistics estimates the expected value
z(x0) at location x0 as the weighted sum of the
known data z(x1), z(x2), . . . ,z(xn) taken to be real-
izations of z(x) at x1, x2, . . . ,xn (Rouhani 1989)
such that:

z∗ (x0) =
n

∑

i=1

[λiz (xi)], (3)

where λi is the weights chosen to satisfy the
following statistical conditions.

The first condition requires the estimator z∗(x0)
to be unbiased resulting in:

n
∑

i=1

λi = 1. (4)

The second condition requires the estimator z∗(x0)
to have minimum variance of estimation.

2
n

∑

i=1

λi · γi0 −
n

∑

i=1

n
∑

j=1

λi · λj · γij = minimum, (5)

where γij = γ(|xi − xj|).
The minimization of equation (5) subjected to

the condition in equation (4) is achieved by the
Lagrangian method, and this form of linear inter-
polation is referred to as kriging. In simple kriging,
the mean (the trend component m(x)) is assumed
to be constant and known prior to kriging. In ordi-
nary kriging, the mean is assumed to be constant
but has to be estimated. When the regionalized
variable exhibits a trend, the assumption of the sta-
tionarity of the mean is violated, leading to a non-
stationary interpolation technique. A method that
provides an estimator when a trend is present in the
measured dataset is called universal kriging (Isaaks
and Srivastava 1989). Solution from UK requires
an additional dataset to deal with the unbiased-
ness condition. The trend can be modelled with a
polynomial given by:

m (x) =

l
∑

p=1

ap · fp (x) , (6)

where ap is the pth coefficient; fp is the pth basic
function that describes the trend; l is the num-
ber of functions used in modelling the trend.
The additional condition to be satisfied is given
by:

n
∑

i=1

λi · fp (xi) = fp (x0). (7)

The UK with l number of unbiasedness condi-
tions is found by minimizing the variance of esti-
mation given in equation (5) subjected to the
condition in equation (7) resulting in the follow-
ing simultaneous equations represented in matrix
form.
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(8)

where γij is the underlying semi-variogram bet-
ween points xi and xj; f j

p is fp(xj); µp is the
Lagrangian multiplier associated with pth unbi-
asedness condition. The estimation variance of UK
is given by:

σ2
uk =

{

n
∑

i=1

λi · γio

}

+

{

l
∑

p=1

µpfp (xo)

}

− γoo. (9)

UK is applied when the regionalized variable
exhibits some form of trend (Isaaks and Srivastava
1989). The main difficulty with UK is the circular
nature of the problem. To determine the trend, the
underlying semi-variogram must be known, but to
determine the semi-variogram, the trend must be
known (since the semi-variogram is found from the
residuals z(x)−m(x)). In the present analysis, the
residual approach (ASCE Task Committee 1990a,
1990b) is followed to resolve the problem, in which
polynomials (of different orders) are used to model
the trend within the local neighbourhood. The
residuals are then calculated by direct subtraction
of the polynomial trend from the measured val-
ues to determine the semi-variogram. As a semi-
variogram is needed initially to calculate the trend,
the solution requires an iterative process that uses
a base semi-variogram to calculate the trend and
residuals and then re-calculate the semi-variogram
from the residuals. The differences between the
estimated and observed values (defined as resid-
uals) at the measured locations are summa-
rized using the cross-validation statistics given
by:

ME =
1

N

N
∑

i=1

[z∗ (xi) − z (xi)] , (10)

MSE =
1

N

N
∑

i=1

[z∗ (xi) − z (xi)]
2
, (11)

KRMSE =
1

N

N
∑

i=1

[z∗ (xi) − z (xi)]

σ2
uk.i

2

, (12)

where N is the number of data points used in esti-
mating residual statistical parameters. The trend
order and the theoretical semi-variogram that
results in close to zero mean error (ME); mini-
mum mean square error (MSE); and kriged reduced
mean square error (KRMSE) near to 1 are cho-
sen as final model parameters for geostatistical
interpolation.

3. Case study

Capitan aquifer in the Carlsbad area of New
Mexico is situated between the townships 22 S to
24 S and ranges 26 E to 28 E. The study area, as
shown in figure 1 is located in the Eddy County of
south-east New Mexico with an aerial extent of
424 km2. It is bounded on the north by the
Seven Rivers Hills, on the west by the Guadalupe
Mountains, on the south by the Black River Valley
and on the east by the Pecos River. The average
annual precipitation within the study area ranges
from 13′′ (33 cm) in the Pecos Valley near Carlsbad
to 22′′ (56 cm) near the west of the Guadalupe
Mountains. The alluvium is recharged by preci-
pitation, floods in ephemeral streams, subsurface
inflow and by seepage from irrigation. Groundwa-
ter is discharged from the alluvium by wells, sub-
surface outflow and seepage along the Pecos River
(Bjorklund and Moths 1959). In general, ground-
water flow in the basin and shell facies is primarily
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Figure 1. Map of New Mexico counties with study area.

towards the east. The high permeability of the
Capitan aquifer resulted in concentrated flow along
the trend of the reef, generally towards the north

and northeast. The water table in the alluvial
aquifer is at or near the land surface along most
of the Pecos River, and the alluvial aquifer is
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recharged by or discharges to the river (Bjorklund
and Moths 1959). The alluvial aquifer is hydrauli-
cally connected to the underlying carbonate-rock
aquifer by leakage through the upper confining unit
of the carbonate-rock aquifer. Approximately 80%
of the irrigation within the study area uses ground-
water source. Most of the wells in the study area are
concentrated in the central portion of the alluvial
aquifer and tap water primarily from the alluvial
aquifer (Hale 1961).

3.1 Data used

The water table elevations in the 38 monitor-
ing wells spread across the aquifer for the irriga-
tion years 1996 and 2003 are collected from the
Office of State Engineer (OSE), Las Cruces, New
Mexico, USA. Water levels in the monitoring wells
are recorded during January every year. However,

the number and the location of observation wells
monitored every year are highly varied. The loca-
tion of the observation wells and the statistical
distribution of the water table elevations for the
years 1996 and 2003 are represented in figure 2.
Since the variability between the two extreme mea-
sured values for each dataset is less, the probabil-
ity distributions are compared with the standard
normal curve. From the normal quantile–quantile
plots, it is observed that the water levels from
the two datasets follow near-normal distribution
leading to the application of geostatistical inter-
polation techniques. In order to be consistent, the
digitized boundary of the aquifer provided by OSE
is treated as the no-flow boundary for the anal-
ysis. All monitoring wells in the study area pro-
vide the water table elevations corresponding to
the alluvial aquifer. No extreme events (includ-
ing floods and droughts) are reported between

Figure 2. Statistical distribution of water table elevations during 1996 and 2003.
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1996 and 2003. Hence, temporal change in the
water table profile reflects the linear changes
in groundwater resulting from individual budget
components.

4. Results and discussion

The process of generation of continuous surface of
water table elevations from the measured water lev-
els at randomly located observation wells is broadly
classified into three steps.

• Preparation of omnidirectional and directional
semi-variograms, thereby estimating the direc-
tion of the least trend.

• Choosing the trend order and the underlying
semi-variogram model that satisfy unbiased and
minimum variance conditions.

• Preparation of continuous surface of water table
elevations and estimation variance using the
final theoretical semi-variogram model and trend
order.

The groundwater levels at unknown locations are
not only a function of distance to the surround-
ing measured locations, but also on the direction
in which the observation wells are located. How-
ever, it is difficult to examine the two perpendicular
axes with maximum difference in semi-variogram
values using the Geostatistical analyst�. Hence

Figure 3. Omnidirectional semi-variograms for 1996 and
2003 datasets.

Figure 4. Directional semi-variograms (at 22.5◦ interval) for
1996 dataset.

omnidirectional and directional semi-variograms
are prepared using MATLAB� code. The program
divides the distance between the data pairs into
lags and calculates the semi-variance for that lag
distance. Figure 3 shows omnidirectional semi-
variograms for 1996 and 2003 datasets. The
steep slope in the semi-variogram indicates non-
stationarity in groundwater levels, representing the
trend. In order to assess the degree of anisotropy
and major direction of spatial continuity, direc-
tional semi-variograms are generated at 22.5◦ inter-
vals and are shown in figure 4 for a typical 1996
dataset. From these directional semi-variograms,
the two perpendicular axes that have maximum
difference in semi-variogram values are observed
to be 67.5◦ and 157.5◦ (measured clockwise from
north). The high semi-variogram values in the
157.5◦ direction indicate that the groundwater
levels change at a higher spatial rate along the
south-east direction, which indicates that ground-
water flow is along the south-east axis. The
semi-variogram in the 67.5◦ direction that shows
near absence of trend is taken as the underly-
ing semi-variogram. The generalized MATLAB�

code with necessary input files to generate the
omnidirectional and directional semi-variograms
(at 22.5◦ intervals) can be downloaded from http://
web.nmsu.edu/∼phani/UniversalKriging.zip.

The semi-variogram value at the origin is almost
zero for bins with low lag distances. Hence, the
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Table 1. Cross validation statistics for 1996 and 2003
datasets.

Model Trend order ME MSE KRMSE

(m) (m2)

1996 dataset

Spherical First −0.19 1.96 0.86

Second −0.52 2.81 0.97

Gaussian First −0.58 3.06 1.26

Second −0.70 5.51 1.16

Exponential First −0.36 2.01 0.69

Second −0.58 2.65 0.73

2003 dataset

Spherical First −0.56 3.60 0.81

Second 0.35 4.79 1.07

Gaussian First −0.56 3.62 0.78

Second 0.41 4.79 1.10

Exponential First −0.59 3.63 0.84

Second 0.38 4.79 1.07

ME: Mean error; MSE: Mean square error; KRMSE: Kriged
reduced mean square error.

Figure 5. Experimental and fitted semi-variogram models
for 1996 and 2003 datasets.

Figure 6. Kriged water table surface using 1996 dataset.

Figure 7. Comparison of contour maps of water table eleva-
tions between 1996 and 2003.
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nugget effect is ignored in the analysis. The
experimental semi-variogram is compared with
different theoretical models such as spherical,
Gaussian, exponential models with the first and
second orders of the trend. Table 1 shows the cross-
validation statistics for 1996 and 2003 datasets
respectively. From these statistics, it can be con-
cluded that the spherical model with the first
order, which resulted in close to zero ME, min-
imum MMSE and close to 1 KRMSE, for the
1996 dataset is chosen as the final model for
generating the surface of the water table eleva-
tions. Similar analysis is performed on the 2003

Table 2(a). Difference in water table elevations between
1996 and 2003 datasets.

Difference No. of data Sum of differences Y 2
D

(yd) (m) pairs (n) (YD = yd* n) (m) (m2)

−5 5 −25 625

−3 82 −246 60516

−2 296 −592 350464

−1 859 −859 737881

0 3328 0 0

1 2652 2652 7033104

2 6156 12312 151585344

3 3621 10863 118004769

4 5619 22476 505170576

5 989 4945 24453025

6 2470 14820 219632400

7 28 196 38416

8 118 944 891136

10 2 20 400

12 4 48 2304

14 3 42 1764

15 6 90 8100

19 4 76 5776

21 2 42 1764

Sum 26244 67804 1027978364

Table 2(b). Statistical parameters
for differencing.

n 26244

DOF 26243

Y D 2.5836

S2
D 39164.85

SD 197.9011

tcr 1.645

α 0.05

SD = Standard deviation of the dif-
ferences in water level elevations;
DOF = Degrees of freedom; α =
Significance level; tcr = Critical
values of t statistic for a given α
value.

dataset, for which the spherical model with second
order trend is fitted well. The experimental semi-
variogram and the best fitted theoretical mod-
els for 1996 and 2003 datasets are represented in
figure 5. The semi-variogram parameters (includ-
ing sill and range) that defines amplitude, and the
distance beyond which autocorrelation is negligible
are provided in figure 5. Since the area of interest
(alluvial aquifer) is heavily stressed, groundwater
flow models of the region uses a fine discretization
in simulation. Hence, the water table and estima-
tion variance surfaces are prepared at the nodes of
a square grid of 100 m resolution to generate the
corresponding contour maps.

For observing the temporal variation in ground-
water levels within the study area, the contour
maps of water table elevations and the estima-
tion variance are prepared for the two datasets at
2 and 1m intervals, respectively. The water table
surface generated using Geostatistical analyst�

for the 1996 dataset is shown in figure 6. The
movement of groundwater flow in the south-east
direction indicates that the groundwater in the
study area behaves in response to the surface
water system. The contour map of water table
elevations for both the datasets is represented in
figure 7. From this map, it can be concluded that
there is a general decrease in water levels from
1996 to 2003. The decrease is more significant in
the northern part of the aquifer along the Pecos

Figure 8. Kriged surface of estimation variance for 1996
dataset.
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River. In contrast, there is a slight increase in water
table elevations along the central-east portion of
the aquifer. A significant decrease in groundwater
levels is observed in the western part of the study
area. This is mainly attributed to changes in land
use assisted with groundwater flows towards the
river. The estimated water table elevations at each
regular grid cell location during 1996 and 2003 are
then compared to determine if there is a signifi-
cant difference in water table profile between the
2 years. A matched pair t-test is performed for the
difference in water table elevations at each grid cell.
Null hypothesis used in statistical analysis assumes
that there is no significant change in water table
profile with time. Results of the matched pair t-
test are summarized in tables 2a and 2b. Since
the statistical analysis is performed on two depen-
dent samples (the estimated water levels at regular
grid cells), matched pair t-test is more reliable for
analysing the temporal changes in the water table
surface. Confidence interval test on the mean of the
difference between the two datasets concludes that
the decrease in water table elevations from 1996
to 2003 is between 0.6 and 4.5 m at 90% confi-
dence. The error in the estimation of water table
surface for 1996 dataset is shown in figure 8. From
this, it can be inferred that the estimation variance
is more than 8 m2 in regions where observations
are not made. The estimation variance is almost
absent around the monitoring wells in the central
portion of the aquifer. This suggests that there is a
high priority to install additional monitoring wells
in the west to south-west portion of the study area
for effective management of groundwater resources
of the region.

5. Conclusions

This paper deals with the application of univer-
sal kriging to estimate the continuous surface of
water table elevations and the estimation vari-
ance for the Carlsbad area alluvial aquifer in
New Mexico. The data from the 38 observation
wells follows near-normal distribution. A general-
ized MATLAB� code was developed to examine
the two perpendicular axes with maximum devi-
ation in semi-variogram values. Several combina-
tions of neighbourhood size, polynomial trend and
semi-variogram models for the residuals were tried
before performing the geostatistical interpolation.
Flow of groundwater in the study area is primar-

ily towards the southeast along the Pecos River.
Water table elevation contours for both datasets
reveal that there was a significant decrease in the
water table profile from 1996 to 2003. Results of
the statistical analysis concluded that the decrease
in water table elevations is between 0.6 and 4.5 m
at 90% confidence. The contour map of estimation
variance for both the datasets concluded that the
error in the estimation of water table elevations is
significant in the west and south-west portions of
the aquifer due to the absence of monitoring wells.
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