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Abstract— Surface electromyography (sEMG) data ac-
quired during lower limb movements has the potential for
investigating knee pathology. Nevertheless, a major chal-
lenge encountered with sEMG signals generated by lower
limb movements is the inter-subject variability, because the
signals recorded from the leg or thigh muscles are contin-
gent on the characteristics of a subject such as gait activity
and muscle structure. In order to cope with this difficulty,
we have designed a three-step classification scheme. First,
the multichannel sEMG is decomposed into activities of the
underlying sources by means of independent component
analysis via entropy bound minimization. Next, a set of
time-domain features, which would best discriminate var-
ious movements, are extracted from the source estimates.
Finally, the feature selection is performed with the help of
the Fisher score and a scree-plot-based statistical tech-
nique, prior to feeding the dimension-reduced features to
the linear discriminant analysis. The investigation involves
11 healthy subjects and 11 individuals with knee pathology
performing three different lower limb movements, namely,
walking, sitting, and standing, which yielded an average
classification accuracy of 96.1% and 86.2%, respectively.
While the outcome of this study per se is very encourag-
ing, with suitable improvement, the clinical application of
such an sEMG-based pattern recognition system that dis-
tinguishes healthy and knee pathological subjects would
be an attractive consequence.

Index Terms— Fisher score, independent component
analysis, knee pathology, linear discriminant analysis, sur-
face electromyography.
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LOWER LIMB motions are inevitable for performing

several human activities such as sitting, standing, stair

ascent, stair descent, squatting, etc. In order to diagnose

neuromuscular and skeletal disorders, the gait analysis is

essential that subsumes the classification and assessment of

lower limb motions [1]. Since traditional techniques meant

for investigating the gait require an extensitive gait laboratory,

there is a pressing need to build simpler approaches for the

appraisal of gait dysfunction. Several kinematics and non-

invasive techniques have been recommended for assessing the

lower limb activities. During recent years, the electromyog-

raphy (EMG)—electrical recordings of muscle activities from

the skeletal muscles—has been widely used for this task [1],

[2]. These myoelectric signals are extensively sought after for

neuropathic and myopathic investigations, prosthetic device

control, and rehabilitation [3], [4]. The EMG signals can either

be acquired by deploying surface electrodes or with concentric

needle electrodes [5]. The former method is mainly followed

in prosthetic and rehabilitation applications, whereas the latter

in the diagnosis of various neuro-muscular disorders that affect

motor units (MUs) [5], [6].

The surface EMG (sEMG) has been a preferred choice for

examining the actions and gestures of the upper or lower limb,

as well as for prosthetic control [5], [7]. This process includes

extracting the features from the sEMG, followed by assigning

a signal to one of the various categories of limb movement

using a pattern recognition technique [5]. Classifying the

sEMG signals corresponding to lower limb movements has

been deemed more challenging by researchers than those

concerning upper limb movements, because the former signals

are complex in nature, and the associated muscles are buried

deep beneath the skin with a considerable overlap between

each other [8]–[10].

Many studies have been devoted to classify the lower

limb sEMG data with various signal processing and pattern

recognition methods [11]–[13]. Choi et al. applied a neural

network classifier to recognize the sEMG signal patterns of

lower limb muscles during the postural balance recovery of

the human body. This study could achieve 75% mean success

rate in motion recognition by classifying the sEMG signal into

five categories—forward perturbation, backward perturbation,

lateral perturbation, and two oblique perturbations [14]. Huang
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et al. investigated the sEMG-based pattern recognition meth-

ods to identify user locomotion modes and achieved nearly

90% classification accuracy [15]. In another study, Atakan et

al. proposed an intent recognition approach for the real-time

supervisory control of a powered lower limb prosthesis, which

could infer the user intent to stand, sit, or walk, by recognizing

patterns in prosthesis sensor data [16]. Interestingly, Joshi

et al. adopted the Bayesian information criterion and linear

discriminant analysis (LDA) to classify different gait phases

from the lower limb sEMG of normal subjects [2]. The fractal

analysis of knee-joint using vibroathrographic (VAG) signals

has been reported by Rangayyan et al. to observe the change

in the fractal dimension (FD) for abnormal VAG signals [17].

In a related work, Ryu and Kim identified multiple gait phases

using the support vector machine (SVM) and LDA to detect

the change in the FD pertinent to abnormal VAG signals [18].

Dedicated efforts have been taken in the past to distinguish

the patterns in sEMG that characterize the posture and gait

of healthy individuals [2], [10], [18]. Of late, there has been

a surge of interest in exploring pattern recognition tools that

cater to identify the sEMG signals resulting from lower limb

movements in subjects having knee issues. Janidarmian et

al. advocated an automated diagnosis system built around

the bagged decision tree classifier to classify a set of time-

domain features deduced from the sEMG data, which rendered

an accuracy of 97.17% in distinguishing healthy subjects

from people with knee abnormalities [19]. In spite of its

impressive performance, this strategy is limited to only binary

classification scenarios. It is noteworthy to briefly discuss

the sEMG classification frameworks—multilayer perceptron

artificial neural network (MP-ANN) in [20], adaptive local

binary pattern (ALBP) in [21], and noise-assisted multivariate

empirical mode decomposition (NA-MEMD) in [22]—and to

present their outcome, since the classifiers were evaluated with

the same dataset that we used for validating our approach. For

brevity sake, an account on these schemes has been deferred

to Section IV-B.

The activities of daily living (ADLs) are a series of rou-

tine activities performed by individuals on a daily basis,

and are essential for independent living at home or in the

community. The ability to independently sit, stand, and walk

is critical towards performing the ADLs. The functionality

of the lower limb muscles during each of the task-specific

maneuvers—sitting, walking, and standing—is quite different.

During standing, the soleus, gastrocnemius, tibialis anterior,

plantarflexors, and dorsiflexors play a key role in maintain-

ing the upright posture. Seated leg extensions involve the

recruitment of a powerful group of muscles, namely, the

quadriceps, whereas a coordinated activation of all lower limb

muscles is observed during walking tasks. The diagnosis of

knee pathology is therefore facilitated by the direct effects of

the disease, which are pronounced in some or all lower limb

muscles during some or all of the aforementioned maneuvers.

It is thus crucial to perform a task-specific classification

of the sEMG patterns, which in turn will enable one to

individually study and assess the impact of a knee disorder on

a specific lower limb task, i.e., sitting, walking, and standing.

The three physical tasks are chosen because these common

exercises aid diagnosis, and do not use extra weights with

weight-lifting plates, dumbbells, fitness equipment, etc., which

would affect the speed and acceleration [20]. Note that since

the task of classifying pathological lower limb muscles is

a persistent challenge, it certainly deserves further research

attention. Furthermore, the sEMG pattern classification has

been widely investigated for neural control of external devices

in order to assist with movements of patients with motor

deficits, because, as of now, limited progress has only been

achieved to make EMG-controlled lower limb prostheses com-

mercially available [16]. Hence the objective of this article

is to design a robust sEMG classifier, which is capable of

distinguishing between the sEMG signals pertaining to lower

limb movements in able-bodied subjects and those with knee

pathology.

Unlike traditional univariate statistical methods, multivariate

techniques can unravel more complex connections between

the dependent and independent variables. In that sense, the

independent components analysis (ICA) is a predominantly

applied strategy for source separation or estimation of in-

dependent components (ICs) subject to the supposition that

the observed data stems from linearly mixing these ICs. In

view of the sEMG processing, the ICs may closely be related

to the motor unit action potentials (MUAPs), e.g., ICA for

upper limb sEMG applications in [23]–[25]. In general, the

ICA algorithms exploit the higher order statistics to minimize

the mutual information (MI) among the sources. We have

adopted a recent approach that estimates sources via entropy

bound minimization (ICA-EBM) [26]–[28]. The reason for this

choice is that a rigorous simulation study in [29] demonstrates

that the ICA-EBM could produce a remarkably accurate set

of sources with a meager computational requirement.

A feature vector comprises six time-domain features ex-

tracted from the sEMG data, which are believed to be effective

in discriminating the movements, as well as the FD estimated

from the respective data. The dimension of the feature vector

is reduced by an unsupervised statistical method known as the

profile likelihood maximization (PLM) based on the Fisher

score (FS), which makes it conducive for the subsequent

LDA classifier to accurately predict the lower limb movements

responsible for the generation of the sEMG data. The proposed

sEMG classifier performance has rigorously been evaluated in

the task of identifying the movements—walking, sitting, and

standing—associated with knee muscles in healthy individuals

and subjects afflicted with knee disorders.

The remainder of the article is organized as follows. Sec-

tion II provides an in-depth overview of ICA-EBM, FD

determination using Higuchi algorithm, and PLM. In a broader

sense, Section III is devoted to describing the recording

and processing of sEMG data as well as the performance

evaluation of the classifier. This section covers the details

on an exhaustive set of features that in turn is reduced in

dimension with the FS-based PLM algorithm and the sEMG

data classification by the LDA. In what follows, the quan-

titative results obtained from the advocated scheme and the

related discussion are in order under Section IV-A and IV-

B, respectively. Finally, Section V concludes this study with

pointers on future perspectives.
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II. TECHNICAL PRELIMINARIES

A. Source Separation Via Entropy Bound Minimization

Let z(t) = [z1(t), . . . , zN (t)]⊤ = Vx(t) be the ob-

served signal assumed to have originated from linear mixing

of N statistically independent zero-mean sources x(t) =
[x1(t), . . . , xN (t)]⊤ through a nonsingular N × N mixing

matrix V, where (·)⊤ and t represent the matrix transpose

operation and time index, respectively. The objective of an

ICA algorithm is to recover the demixing matrix, W = V−1,

such that the independent source estimates would be yielded

via a linear transformation, y(t) = [y1(t), . . . , yN (t)]⊤ =
Wz(t). In practice, this is achieved by minimizing a contrast

function subject to some constraints. An extensively studied

ICA contrast is the MI, expressed as follows in terms of the

entropy function H(·)

I(y1; . . . ; yN ) =
N∑

n=1

H(yn)− log | det(W)| −H(z) (1)

where the time index is omitted for simplicity’s sake.

Traditional ICA algorithms rely on an entropy estimator

to evaluate the MI given in (1). The challenges associated

with this category of methods are computational overheads

warranted by the nonparametric entropy estimation, sensitivity

to outliers in case of Edgeworth expansion, and poor perfor-

mance due to improper assumption on the source densities.

Additionally, a priori information on the EMG source densities

is unavailable in most situations. What we have known so far

is that, with respect to a Gaussian distribution, the probability

density of EMG is shown to peak more sharply near zero

in [30], and the measured EMG density is reported to have a

larger kurtosis in [31] and [32]. Nevertheless, on the upside,

the ICA-EBM propounded in [28] by Li and Adalı is quite

flexible, can approximate the entropies of a wide range of

distributions, and hence it remains ideally suited for separating

the sources that might have originated from distributions

that are sub- or super-Gaussian, unimodal or multimodal,

symmetric or skewed by employing only a small class of

nonlinear functions [28]. An added merit is the enhancement

in the accuracy of source estimates by way of relaxing the

orthogonality constraint among the components. A primer

that introduces the underlying principle of the ICA-EBM

is presented in the ensuing paragraphs. For more technical

subtleties related to its implementation, interested readers are

directed to [26]–[28].

Let M(y) be a measuring function of a random variable y
having zero mean and unit variance; an estimate of its expected

value η̂M can be obtained by averaging the samples of M(y)
drawn from the distribution p(y). The crux of the ICA-EBM

lies in determining an upper bound for H(y) by solving for the

maximum entropy distribution (MED) that maximizes the en-

tropy subject to the constraint, E[M(y)] = ηM . According to

the principle of maximum entropy, p(y) maximizes the entropy,

H[p(y)] = −
∫∞

−∞
p(y) log p(y)dy, subject to the following

set of constraints:
∫∞

−∞
yp(y)dy = 0;

∫∞

−∞
y2p(y)dy = 1;∫∞

−∞
M(y)p(y)dy = ηM ; and

∫∞

−∞
p(y)dy = 1. The entropy

maximization problem is hence formulated as a Lagrangian

function

L[p(y)] = −
∫ ∞

−∞

p(y) log p(y)dy + ℓ1

(∫ ∞

−∞

p(y)dy − 1

)

+ ℓ2

∫ ∞

−∞

yp(y)dy + ℓ3

(∫ ∞

−∞

y2p(y)dy − 1

)

+ ℓ4

(∫ ∞

−∞

M(y)p(y)dy − ηM

)

with ℓ1, . . . , ℓ4 being the Lagrangian multipliers. It has been

shown in [28] that letting δL[p(y)]/δp(y) = 0 yields

p(y) = A exp[−αy2 − βy − γM(y)]

wherein the parameters A, α, β, and γ are determined by

taking the constraints into account. The maximum entropy is

then expressed as

H[p(y)] = −
∫ ∞

−∞

p(y) log p(y)dy

= − logA+ α+ γηM

= 0.5 log(2πe)−N (ηM )

where 0.5 log(2πe) is the entropy of a standard Gaussian

random variable, and N (ηM ) = 0.5 log(2πe) + logA − α −
γηM is the negentropy, which can be numerically solved

as explained in the sequel. To this end, one can derive the

following functions based on the constraints

f1(α, β) =

∫ ∞

−∞

y exp[−αy2 − βy − γM(y)]d(y) = 0

f2(α, β) =

∫ ∞

−∞

(1− y2) exp[−αy2 − βy − γM(y)]d(y) = 0.

Now α and β values can be deduced with the Newton iteration

[αnew, βnew]
⊤= [α, β]⊤− J−1(α, β)[f1(α, β), f2(α, β)]

⊤

for a given M(y) and γ, where J(α, β) denotes the Jacobian

matrix. Furthermore, by making use of the values of α, β,

and γ, the normalization constant A, the expectation ηM , and

the negentropy N (ηM ) can readily be computed. Thus by

evaluating [ηM ,N (ηM )] at selected points on an interval and

interpolating the results, the negentropy value can be returned

for any ηM ; in other words, the function N (·) is determined

over this interval.

By considering L measuring functions, Ml(y), l = 1, . . . , L,

and estimating the expectation η
[l]
M of each function, an upper

bound estimate of Hl(y) given by

H
[UB]
l (y) = 0.5 log(2πe)−N (η

[l]
M )

can be arrived at. Note that N (η
[l]
M ) is numerically evaluated

as described above, and assigned to be zero provided the

respective MED does not exist for an estimate of η
[l]
M . The

intuitive choice for the estimate of H(y) is the tightest

maximum entropy bound defined as

Ĥ(y) = min
1≤l≤L

H
[UB]
l (y)

which in turn is plugged into the expression of MI in (1).

The ICA-EBM sequentially updates each row of W in the
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following recast of the problem defined in (1) by dint of a

decoupling method prescribed in [33]:

Cn(wn) = Ĥ(yn)− log |e⊤nwn|+K (2)

with K and en being a quantity independent of wn and a

vector of unit length perpendicular to all the rows of W except

wn, respectively. The decoupling method minimizing the

contrast function in (2) deploys a standard vector optimization

procedure with a line-search algorithm equivalent to that of the

FastICA in [34], while still admitting nonorthogonal solutions.

B. Higuchi-Algorithm-Based Fractal Dimension

Higuchi has put forward a strategy in [35] to extract the FD

of an irregular time series, which would possibly reflect the

complexity and the self-similarity of that signal [36]. Owing

to the computation of FD in the time domain, the procedure

is acclaimed to be simple and fast [37]. Besides, the Higuchi-

algorithm-based FD computation enjoys a stable and reliable

outcome [36], [38].

Given a time sequence, y(1), . . . , y(T ), of length T , k time

series ykm can be constructed as follows:

ykm = {y(m), y(m+ k), y(m+ 2k), . . . , y(m+ ⌊T −m

k
⌋k)}

where m and k indicate the initial time index and the delay,

respectively; ⌊·⌋ implies the integer part of the argument. For

each time series ykm, the average length Lm(k) is defined as

Lm(k) :=
1

k

∑⌊T−m
k

⌋
j=1 |y(m+ jk)− y(m+ (j − 1)k)|(T − 1)

⌊T−m
k

⌋k .

Notice that the term (T − 1)/⌊(T − m)/k⌋k serves as a

normalization factor. An average length is calculated for all

ykm’s having the same delay k as

L(k) =
k∑

m=1

Lm(k).

In practice, the FD denoted as D is estimated by finding the

slope of the least square linear fit of the curve—ln(L(k))
versus ln(1/k)—which means that L(k) ∝ k−D.

C. Profile Likelihood Maximization

Zhu and Ghodsi introduced the PLM algorithm in [39]

to estimate the intrinsic dimension of multivariate data from

the scree-plot of eigenvalues associated with its principal

components.

Toward this objective, a statistical model is built based on

the hypothesis that the given data points denoted as S =
{d1, d2, . . . , dq, . . . , dQ} belong to two different probability

distribution functions (PDFs). The PLM algorithm intends to

estimate the index q from the scree-plot of data points such that

the set, S1 = {d1, . . . , dq}, and its compliment with respect to

S , i.e., S2 = {dq+1, . . . , dQ}, are governed by two dissimilar

PDFs, f(d;ψ1) and f(d;ψ2), respectively. In other words,

the algorithm returns the value for q that maximizes the log-

likelihood function

L (q,ψ1,ψ2) =

q∑

i=1

log f(di;ψ1) +

Q∑

j=q+1

log f(dj ;ψ2) (3)

constructed on the independence assumption. The profile like-

lihood for a given value of q can thus be obtained by plugging

in the maximum likelihood estimates (MLEs) of ψ1 and ψ2

deduced from S1 and S2, respectively, into (3):

Lq(q) =

q∑

i=1

log f(di; ψ̂1(q)) +

Q∑

j=q+1

log f(dj ; ψ̂2(q)). (4)

For instance, if the PDFs are assumed to be Gaussian, i.e.,

f(d;µκ, σ
2) =

1√
2πσ2

exp

[
− (d− µκ)

2

2σ2

]
, κ = 1, 2

the MLEs are given by

µ̂1 =

∑
di∈S1

di

q

µ̂2 =

∑
dj∈S2

dj

Q− q

σ̂2 =
(q − 1)σ̂2

1 + (Q− q − 1)σ̂2
2

Q− 2

where

σ̂2
1 =

∑
di∈S1

(di − µ̂1)
2

q

σ̂2
2 =

∑
dj∈S2

(dj − µ̂2)
2

Q− q
.

Note that in (4), the MLEs of ψ1 and ψ2 are denoted as

functions of q, since these estimates are contingent on q. As

alluded to in [39], an exhaustive search is resorted to for the

evaluation of Lq(ι), ι = 1, . . . , Q, and the value of ι for

which (4) attains the maximum, as given by

q̂ := argmax
ι=1,...,Q

Lq(ι)

is deemed as the estimate of q.

III. METHODOLOGY

In the proposed method, the sEMG signals recorded with

the surface electrodes from four knee muscles are first prepro-

cessed, and then supplied to the ICA-EBM algorithm described

in Section II-A to extract the underlying sources. Next, a set of

time-domain features and the FDs of the source estimates are

computed. An optimal subset of feature components derived

from the training dataset that yield a significantly large FS

is selected subsequently via the PLM algorithm presented

in Section II-C. Finally the LDA algorithm is employed in

order to classify the sEMG signals pertaining to the test

dataset into three classes of lower limb movements, i.e., sitting,

standing, and walking. The schematic diagram of the lower

limb movement recognition system is shown in Fig. 1.

A. Data Acquisition

We have tested our sEMG classifier framework with the

sEMG data available at the UC Irvine Machine Learning

Repository [40], which were acquired from 22 male par-

ticipants older than 18 years of age. The subjects include

11 healthy ones without any knee injury or pain and 11
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Fig. 1. Schematic diagram of the ICA-EBM-based sEMG classifier for lower limb movement recognition.

individuals with knee pathology—six with anterior cruciate

ligament (ACL) injury, four having meniscus injury, and one

suffering from sciatic nerve injury. The data collection was

carried out by means of an EMG instrument (DataLog MWX8

by Biometrics Ltd.) and a goniometer, while the subjects

were undergoing three movements in order to investigate the

behavior of knee muscles in the course of gait, leg extension

from a sitting position, and flexion of the leg up. Four

surface electrodes were spaced apart by 20 mm with a high

input impedance (>10 MΩ) that would obviate the need for

a conductive gel. These sEMG electrodes were placed on

the surface of the muscles, namely, vastus medialis (vm),

semitendinosus (st), biceps femoris (bf), and rectus femoris

(rf), along the muscle fiber orientation, whereas the goniometer

was attached to the external side of the knee joint. For the

placement of four sEMG electrodes, the affected limb and

the left leg were chosen for the patient population and able-

bodied subjects, respectively. The recorded signals from all the

four sensors were taken into account for the sitting, standing,

and walking task. The data acquisition during the three lower

limb movements was not randomized. The gait data pertains

to an “over-ground walk”, wherein the participants were

required to walk on level ground and in a straight path. In

addition, the subjects were free to select their own speed

during walking, which could induce variations. Despite the

possibility to monitor walking-speed-related variations by a

goniometer, they are not necessarily to be accounted for in our

study, since we consider merely the sEMG data for classifying

the movements (without relying on the information from the

goniometer). The sEMG signals were stored directly in the

internal storage of MWX8-Biometrics with a microSD card

and transmitted in real-time through a bluetooth adapter with

a resolution of 14 bits and a sampling frequency of 1000 Hz.

In addition, the signals were band-pass filtered using a fourth-

order Butterworth FIR filter with a frequency range between

20 and 460 Hz.

Recall that the sEMG dataset available in an online reposi-

tory (refer to [40]) has been used for the experiments. There

was neither any synchronism during a movement execution,

nor was the time normalization carried out for the dataset prior

to data analyses. Moreover, the dataset does not include the

sEMG signals corresponding to transition states, i.e., standing

to walking, standing to sitting, etc.

B. Data Processing

The band-pass filtered sEMG data was supplied to the ICA-

EBM algorithm to extract the source estimates, which in turn

were divided into data segments, each one comprising 256

samples, with an overlap of 64 samples between adjacent

segments. To facilitate the sEMG classification, the following

set of time-domain features was derived from an sEMG data

segment, which can be regarded as a time series y(t), t =
1, . . . , T . Furthermore, the FD was estimated from each data

segment in a manner described in Section II-B.

1) Extracted Features:

• Auto Regressive (AR) Model. For a time series, which

is stochastic and sufficiently stationary, the AR model of

order p is written as

y(t) = −
p∑

i=1

aiy(t− i) + e(t)

with ai and e(t) being the AR parameters and white

noise, respectively.

• Mean Absolute Value (MAV). It is calculated by taking

the average of the absolute value of a time series as shown

below

MAV :=
1

T

T∑

t=1

|y(t)|.

• Variance (VAR). For a zero-mean time series, the vari-

ance—mean value of the square of the deviation of each

time sample—can be simplified as

VAR :=
1

T − 1

T∑

t=1

y(t)2.

• Root Mean Square (RMS). It is expressed as the

square root of the arithmetic mean of the squared sample

amplitude of a time series as follows

RMS :=

√√√√ 1

T

T∑

t=1

y(t)2.

• Waveform Length (WL). For a given a time series,

the cumulative change in amplitude between adjacent

samples is computed as

WL :=
T∑

t=2

|y(t)− y(t− 1)|.
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• Zero Crossings (ZC). The total occurrences of sign

change—switching from a positive to a negative ampli-

tude and vice versa—in a time series is given by

ZC :=
T∑

t=2

ζ(t),

where

ζ(t) =





1, if sgn(−y(t)× y(t− 1)) and

|y(t)− y(t− 1)| ≥ ǫ

0, otherwise

with sgn and ǫ being the signum function and the user-

defined threshold, respectively.

We have chosen these time-domain features based on the

fact that the RMS, fourth-order AR, and WL are reported

to have improved the sEMG classification accuracy involving

upper and lower limb movements compared to well-known

frequency-domain methods such as the Fourier transform

and wavelet transform. Besides, it has been claimed that the

RMS and AR coefficients are computationally efficient and

insensitive to electrode displacements [41].

2) Feature Dimensionality Reduction: In the sequel, each

feature is denoted by a vector of length 28

fi =[ARvm,ARst,ARbf,ARrf,RMSvm, . . . ,RMSrf,

MAVvm, . . . ,MAVrf,VARvm, . . . ,VARrf,WLvm, . . . ,

WLrf,ZCvm, . . . ,ZCrf, FDvm, . . . , FDrf]
⊤

where i = 1, . . . , Ntrain with Ntrain being the total number

of data segments in the training dataset. The subscript of a

feature vector component indicates the muscle from where

the sEMG has been recorded. Therefore, the entire set of

features can be represented as a matrix F ∈ R
28×Ntrain =

[f1, . . . , fNtrain
]. This allows us to denote each row of F as

a vector of length Ntrain, e.g., the second row of F is given

by f2 = [AR
(1)

st , . . . ,AR
(Ntrain)

st ], where the superscript within

the parentheses stands for the index of the data segment.

The feature dimensionality reduction attempts to find a subset

of feature components such that in the space spanned by

the dimension-reduced features, the between-class distances

remain as large as possible while the within-class distances

are kept as small as possible. Since it requires to solve a

combinatorial optimization problem, an expedient strategy is

to alleviate the complexity by relying on the FS, wherein

a score is computed for each feature component separately

according to a criterion F in (5). Let µj
k and σj

k denote the

mean and standard deviation (SD) of the elements in the j-th

row of F that belong to the k-th class, respectively, and let µj

represent the mean of all the elements that constitute the j-th

row. Then FS can be defined as

F(f j) =

∑C

k=1(µ
j
k − µj)2

∑C

k=1(σ
j
k)

2
. (5)

After computing the FS for each feature component, a heuris-

tics would pick the top-q ranked feature components with large

scores. In lieu of deciding q by naive methods, we employ

the PLM described in Section II-C, which is premised on

statistical reasoning. The FS values of the feature components

supplied to the PLM are plotted in the descending order to

form a scree-plot, whose “elbow” point corresponds to the

value of q. Thus, in the present setting, the PLM has been

tailored to select a set of (sub)optimal feature components,

which would reduce the computational overheads of the ensu-

ing classification task, and hopefully preserve the accuracy of

the sEMG classifier.

3) Feature Classification: Admittedly, options abound for

the sEMG classification in general, e.g., SVM, neural network,

and k-nearest neighbor algorithm; however, the LDA has been

proven effective in the context of lower limb sEMG [25], [42],

[43]. In principle, the discriminant ability of LDA is enhanced

during classification by maximizing the ratio of the between-

class variance to the within-class variance. Consider fki as

the i-th feature vector that belongs to class k of cardinality

Nk; now by denoting the sample mean of the feature vectors

bearing class label k and the overall sample mean as µk and µ,

respectively, the within-class scatter matrix Sw and between-

class scatter matrix Sb can formally be defined as

Sw :=
C∑

k=1

Nk∑

i=1

(fki − µk)(f
k
i − µk)

⊤ (6)

Sb :=
C∑

k=1

(µk − µ)(µk − µ)⊤. (7)

The LDA classifier is endowed with the following merits:

(1) It does not require iterative training; (2) It precludes the

chances of under- or over-training of data, thereby resulting

in high classification accuracies [42]; and (3) With a good

linear approximation of a high-dimensional space via feature

reduction, it remains as a simple yet an efficient mechanism.

C. k-fold cross validation

In view of improving the reliability of classification results

by simple holdout method, a k-fold cross validation strategy

is resorted to for evaluating the sEMG classifier performance,

where k is three. This requires the dataset to be randomly

partitioned into k subsets, and the holdout method to be

repeated k times (folds). Each time, one of the k subsets

is treated as a test dataset, whereas the rest of the k − 1
subsets jointly form a training dataset. The mean classifica-

tion accuracy across all k trials has been reported, thereby

removing the dependency on how the data is divided. The

cardinality of the feature set being classified is roughly in the

order of 50000, for instance, if 13 features are recommended

by the PLM approach, the dataset will have 51580 elements

(60 segments×22 subjects×13 features×3 tasks). Specifically

in our case, the training and test datasets comprise randomly

selected 70% and 30% elements, respectively, in each trial,

that jointly constitute the original feature set. Care has been

taken to ensure that every data point is included in the test

dataset exactly once, and is an element of a training dataset

k−1 times. Note that the training dataset has exclusively been

used for the feature dimensionality reduction task described in

Section III-B.2 and for optimizing the LDA model parameters.
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D. Performance Evaluation Metrics

Apropos of quantifying the correct classification of normal

and pathological samples by our approach, the following

statistical metrics have been adopted: (1) sensitivity (Se);

(2) specificity (Sp); and (3) accuracy (Ac). By denoting the

true positive, true negative, false positive, and false negative

outcome of the sEMG classifier as PT, NT, PF, and NF,

respectively, the aforementioned metrics are given by

Se :=
PT

PT +NF
× 100% (8)

Sp :=
NT

NT + PF
× 100% (9)

Ac :=
PT +NT

PT +NT + PF +NF
× 100%. (10)

Additionally, we have provided the confusion matrix also

known as the error matrix for the visualization of our classifier

performance. In other words, it enables one to easily scrutinize

whether the algorithm mislabels the data that belongs to one

class as another. While each column of the matrix C represents

the percentage of instances in a predicted class, each row

indicates the instances in percentage in an actual class or

vice versa. Specifically the outcome of this study can be

summarized using the matrix

C =



CWW CWS CWT

CSW CSS CST

CTW CTS CTT




where the subscripts W, S, and T imply the walking, sitting,

and standing, respectively. For instance, CWS is calculated as

follows:

CWS =
No. of cases in class W predicted as class S

Total cases predicted as class S
×100%.

Since all the correct predictions are located along the main

diagonal of the matrix, the errors can easily be noticed by

visually inspecting the off-diagonal elements.

IV. RESULTS AND DISCUSSION

A. sEMG Classification Results

To begin with, the feature components were listed along

the abscissa of Fig. 2 in the decreasing order of their FS,

which in turn were computed from a training dataset. Next, a

scree-plot was constructed by linking the points that represent

the FS values shown in the ordinate. Upon feeding the FS

values to the PLM algorithm detailed in Section II-C, the

stochastic method determined the supposedly elbow point

(orange vertical line segment) of the scree-plot. A subset of

the feature components located to the left of the elbow point is

deemed relevant to the lower limb movement recognition task.

Phrased differently, this subset gave rise to the dimension-

reduced features, with which the movement pertinent to an

sEMG signal belonging to a test dataset was identified by

the LDA algorithm. The sEMG classifier performance has

been quantified in percentage of metrics defined in (8) to (10)

and consolidated in Table I, which reflect how reliably the

lower limb movement could be predicted by analyzing the

signals recorded during the task. Essentially, we studied the

percentage of accuracy with which the sEMG classifier could

reveal whether a recorded sEMG signal pertains to either

walking or sitting or standing. Table II reports the subject-

wise mean and SD of the correct classification percentage for

the sEMG data acquired from healthy individuals, whereas

the results concerning the subjects with knee pathology are

compiled in Table III. The percentage of success (mean and

SD) attained by the classifier while assigning the sEMG

data from normal subjects into three known classes—walking,

sitting, and standing—is concisely given by the mean con-

fusion matrix in Table IV. Similarly, the exact classification

in percentage (mean and SD) for the subjects suffering from

knee pathology is displayed in Table V. In Table IV and V,

the diagonal elements indicate the classification accuracy in

percentage in the case of subjects without and with knee

pathology, respectively.

We have also performed an investigation to assess the influ-

ence of source separation on the sEMG classifier performance.

To this end, the classification pipeline outlined in Section III

was modified by precluding the ICA module. This means

that the reduced set of features extracted directly from the

filtered and segmented sEMG signals was supplied to the

LDA classifier. Since the blind source separation such as the

ICA is meant to separate the sources from their mixtures

subject to the (statistical) independence constraint, one may

anticipate that the classifier performance would remarkably

improve when the features are derived from the intrinsic

sources identified by the ICA-EBM approach rather than from

the actual sEMG recordings. We learn that the computational

efforts due to the implementation of ICA-EBM have indeed

paid off in the proposed scheme as the classification outcome

listed in Table II and III corroborates with this claim. To

summarize, the source separation entailed an increase in the

average classification accuracy across all subjects and lower

limb movements from 74.7% to 96.1% and 65.9% to 86.2%

for the healthy population and individuals with knee ailments,

respectively.

B. Discussion

As noted in Section I, we summarize and compare the

contributions akin to ours—in the sense that these schemes

made use of the dataset with which we validated our approach.

Herrera-González et al. segregated a combination of sEMG

and goniometric signals into three classes defined by the lower

limb movement [20]. Toward this goal, the time-frequency and

wavelet transform features were derived from the data and

classified using an MP-ANN with an accuracy of 88%, 92%,

and 94% for walking, sitting, and standing task, respectively.

The performance metrics estimated from this experiment are

listed in Table VI. Despite good classification accuracy for

the pooled data (combination of normal subjects and knee pa-

tients), the classifier performance for the individual population

remains intractable. Moreover, this study relies on two modal-

ities—sEMG and goniometer—to achieve this end. Ertuğrul

et al. developed an ALBP for extracting features based on

local changes in an sEMG signal, and demonstrated its ability

to discriminate between the healthy and knee pathological
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Fig. 2. The scree-plot (light blue curve) is constructed using the FS (dark blue squares filled with yellow) computed for the 28 fea-
ture components—six time-domain features and the FD from four knee muscles. The PLM algorithm determines the elbow point (or-
ange vertical line segment) associated with the index of FDbf in a k-fold cross validation trial. Consequently, the reduced feature subset

[ARvm, ARst, ARrf, RMSvm, RMSrf, MAVvm, RMSbf, RMSst, ZCvm, MAVrf, WLvm, ARbf, FDbf]
⊤ is only considered by the subsequent LDA

classifier stage for further analysis.

TABLE I

OVERALL MEAN AND SD OF LDA CLASSIFIER PERFORMANCE METRICS IN PERCENTAGE FOR A HEALTHY POPULATION AND SUBJECTS HAVING

KNEE PATHOLOGY, WHILE SEMG WAS COLLECTED DURING THREE LIMB MOVEMENTS—WALKING, SITTING, AND STANDING.

Performance metric
Healthy subjects Subjects with knee pathology

Walking Sitting Standing Walking Sitting Standing

Se 95.1± 1.3 95.4± 1.2 95.3± 1.3 84.6± 1.3 84.8± 1.3 83.1± 1.2

Sp 98.2± 1.2 98.6± 1.1 98.6± 1.2 89.2± 1.2 89.0± 1.2 88.4± 1.3

Ac 96.0± 1.3 96.2± 1.2 96.2± 1.3 86.6± 1.3 86.4± 1.3 85.5± 1.3

TABLE II

SUBJECT-WISE MEAN AND SD OF CORRECT SEMG CLASSIFICATION IN PERCENTAGE FOR HEALTHY INDIVIDUALS UNDER THE FOLLOWING

CONDITIONS: GAIT (WALKING), LEG EXTENSION FROM A SITTING POSITION, AND FLEXION OF THE LEG UP (STANDING).

Subject
Source separation precluded ICA-EBM included

Walking Sitting Standing Walking Sitting Standing

1 73.4± 1.1 75.3± 1.2 75.3± 1.2 95.6± 1.2 96.2± 1.3 96.3± 1.3

2 72.2± 1.2 75.1± 1.3 75.2± 1.3 96.3± 1.3 96.4± 1.2 96.4± 1.3

3 73.8± 1.3 74.9± 1.3 75.6± 1.2 95.8± 1.4 96.1± 1.2 96.2± 1.2

4 73.1± 1.1 75.3± 1.2 74.2± 1.3 96.4± 1.3 96.3± 1.1 96.3± 1.3

5 73.4± 1.2 74.2± 1.4 75.4± 1.2 96.1± 1.4 96.2± 1.0 95.6± 1.1

6 73.6± 1.3 75.4± 1.2 75.3± 1.3 95.6± 1.6 96.3± 1.4 96.1± 1.4

7 73.2± 1.2 75.3± 1.1 75.8± 1.2 96.2± 1.1 96.1± 1.1 95.8± 1.2

8 73.4± 1.1 75.6± 1.2 75.9± 1.3 96.3± 1.5 96.2± 1.4 96.2± 1.3

9 74.2± 1.3 75.2± 1.3 75.6± 1.2 95.8± 1.3 96.1± 1.2 96.4± 1.3

10 73.8± 1.4 75.3± 1.2 75.3± 1.3 95.9± 1.4 96.3± 1.2 96.5± 1.2

11 73.6± 1.3 76.1± 1.4 75.8± 1.4 95.8± 1.2 96.3± 1.3 96.2± 1.5

subjects with an accuracy of 85% [21]. Recently, Zhang et

al. attempted a lower-limb-movement-based classification of

the sEMG data from able-bodied subjects by means of an

NA-MEMD [22]. The outcome of this study is presented in

Table VII. Note that the sEMG classifier described in [21]

is only meant for making a binary decision, and the one

propounded in [22] reports results restricted to the healthy

group.

In the present work, the type and the total number of

components in the dimension-reduced feature set may vary

across the 3-fold cross validation trials, since the PLM uses

different training datasets that are randomly selected prior to

classification. The FD of an sEMG signal is thought to possess

valuable information on the complex nature of the signal

and the randomness associated with physiological conditions.

Therefore, we chose to add the FD along with the time-domain

feature set, which would hopefully retain the signal properties

crucial for discriminating the movements. Note, however, that
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TABLE III

SUBJECT-WISE MEAN AND SD OF SEMG CLASSIFIER ACCURACY IN PERCENTAGE FOR INDIVIDUALS SUFFERING FROM KNEE PATHOLOGY. THE

SEMG WAS ACQUIRED DURING THE EXPERIMENTAL CONDITIONS, NAMELY, WALKING, SITTING, AND STANDING.

Subject
Source separation precluded ICA-EBM included

Walking Sitting Standing Walking Sitting Standing

1 65.3± 1.2 65.3± 1.2 66.3± 1.2 87.7± 1.3 86.4± 1.4 85.8± 1.3

2 65.4± 1.3 66.4± 1.1 66.3± 1.3 86.8± 1.2 86.5± 1.2 85.2± 1.2

3 65.3± 1.1 65.6± 1.2 66.4± 1.2 86.4± 1.3 86.7± 1.3 85.4± 1.3

4 65.2± 1.4 66.2± 1.3 66.2± 1.3 86.4± 1.4 86.4± 1.2 85.5± 1.2

5 65.2± 1.2 66.4± 1.2 66.4± 1.4 86.8± 1.2 86.5± 1.6 85.4± 1.4

6 65.5± 1.0 66.2± 1.4 66.2± 1.2 86.3± 1.3 86.4± 1.4 85.5± 1.1

7 65.6± 1.2 66.4± 1.2 66.3± 1.4 86.4± 1.4 86.3± 1.3 85.7± 1.5

8 65.6± 1.3 66.2± 1.2 66.4± 1.3 86.3± 1.3 86.8± 1.2 85.4± 1.2

9 65.2± 1.2 66.4± 1.3 66.5± 1.2 86.7± 1.2 86.3± 1.3 85.5± 1.4

10 65.6± 1.4 66.5± 1.4 66.3± 1.3 86.8± 1.5 86.2± 1.4 85.8± 1.3

11 65.4± 1.2 65.9± 1.2 66.2± 1.2 86.4± 1.2 86.3± 1.2 85.5± 1.4

TABLE IV

MEAN CONFUSION MATRIX FOR LDA CLASSIFICATION RESULTS IN

PERCENTAGE FOR HEALTHY INDIVIDUALS. BOLDFACED DIAGONAL

ELEMENTS INDICATE THE CLASSIFICATION ACCURACY.

Class

Classified as

Walking Sitting Standing

µ σ µ σ µ σ

Walking 96.0 1.3 2.4 0 1.5 0

Sitting 1.7 0 96.2 1.2 1.3 0

Standing 2.3 0 1.4 0 96.2 1.3

TABLE V

MEAN CONFUSION MATRIX FOR LDA CLASSIFIER OUTCOME IN

PERCENTAGE FOR INDIVIDUALS WITH KNEE DISORDER. THE

CLASSIFICATION ACCURACY IS DENOTED IN BOLDFACE.

Class

Classified as

Walking Sitting Standing

µ σ µ σ µ σ

Walking 86.6 1.3 7.8 0 8.6 0

Sitting 7.5 0 86.4 1.3 5.9 0

Standing 5.7 0 5.8 0 85.5 1.3

TABLE VI

OVERALL MEAN AND SD OF MP-ANN CLASSIFIER PERFORMANCE

METRICS IN PERCENTAGE REPORTED IN [20], WHILE THE SEMG DATA

DURING THREE LIMB MOVEMENTS—WALKING, SITTING, AND

STANDING—WERE POOLED FROM ABLE-BODIED AND KNEE

PATHOLOGICAL SUBJECTS. NOTE THAT THE DATASET IS THE ONE

THAT WAS TESTED IN OUR STUDY.

Performance metric
Able-bodied and knee pathological subjects

Walking Sitting Standing

Se 87 93 87

Sp 92 96 100

Ac 88 94 92

the FD remains incapable of differentiating the tasks that

have subtle changes among themselves, even though it lends

itself to study the signal properties apposite to pathological

conditions [44]. Furthermore, the dimensionality based on

fractal analysis is known to be highly sensitive for hidden

rhythms on sEMG in subjects under fatigue, pathology, and

the condition of increased MU synchronization [45], [46]. This

could be the rationale behind why the FD component has often

been disregarded by the PLM.

In able-bodied subjects, the performance metrics, namely,

Se, Sp, and Ac, of the sEMG classifier are found to be

somewhat consistent, irrespective of the lower limb move-

ments. Nevertheless, there is a decline in the values of these

metrics, when the classifier is deployed to recognize the

tasks carried out with a knee disorder. Observe that the

performance degradation is noticeable with pathological cases

engaged in a standing task. Provided the correct class label is

either sitting or standing, the misclassified data have almost

been distributed similarly among the other two groups in

Table IV and V. Whereas, in healthy and pathological subjects,

the misclassifications corresponding to walking fall into the

remaining two categories in disparate proportions, suggesting

possible changes induced by knee pathology in the physiology

of walking.

Several muscles are involved in the biomechanics of the

knee, which facilitate the realization of disparate movements.

The mundane tasks such as sitting, walking, and standing

that deploy leg muscles cause enhanced levels of quadriceps

and hamstring muscle activities [47]. Such movements are

more likely to be altered, provided the individual is suffering

from knee-related ailments, e.g., ACL, meniscus injury, and

sciatic nerve injury, which may cause dysfunction of the knee-

joint and significantly disrupt the normal course of life [20].

Currently, the gait-analysis-based diagnosis is on the rise for

treating knee ailments. However, serious setbacks are that it

requires an extensive infrastructure such as a purpose-built gait

laboratory, the usage of which is expensive and restricted to

large urban hospitals, thereby inducing delays while patients

seek assessment. Hence, from the viewpoint of an aging
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TABLE VII

MEAN AND SD OF EMD, MEMD, AND NA-MEMD CLASSIFICATION RESULTS REPORTED IN [22], WHEN APPLIED TO THE SEMG DATASET USED

IN OUR EXPERIMENTS.

Walking Sitting Standing

EMD MEMD NA-MEMD EMD MEMD NA-MEMD EMD MEMD NA-MEMD

0.64± 0.14 0.73± 0.10 0.79± 0.03 0.67± 0.11 0.79± 0.07 0.83± 0.05 0.69± 0.06 0.82± 0.06 0.83± 0.06

population, there is a dire need for diagnostic tools that are

economically viable and suitable for a general-purpose clinic.

Previous research findings have established the fact that the

sEMG signals collected from the hamstring and quadriceps

muscles are indeed instrumental for investigating the move-

ment disorders of the knee [19]–[21]. In this respect, the

sEMG is arguably one of the preferred electrophysiological

modalities, because it is non-invasive, inexpensive, and can

be recorded wirelessly. Nonetheless, as can be inferred from

earlier studies, it suffers from poor accuracy as a result

of cross-talk due to overlapping muscles. Therefore, there

is a growing need to further refine the sEMG processing

pipeline to analyze and label the recordings in terms of knee

movements, which would enable the clinicians to keep track

of the alterations caused by knee pathology.

One must bear in mind that the gait sEMG signals are

generally known to have a large variation while performing a

single task, thereby resulting in overlapping of features among

different tasks. This in turn would affect the outcome of an

algorithm devoted to classification tasks. Most importantly,

the performance of the proposed lower limb sEMG classifier

degrades noticeably as it is supplied with the sEMG signals

from the leg muscles of subjects with knee pathology. This is

indeed a foreseen difficulty, and any classifier algorithm would

face challenges owing to the following rationale.

Following a knee injury, particularly in the case of ACL,

a ligament reconstruction is performed with the harvested

hamstring muscle tendon. As a consequence, the hamstring

muscle volume in the reconstructed limb remains significantly

smaller than that of a normal limb [48]. A downside of

atrophy and shortening of hamstring muscles is that they could

adversely interfere with the rehabilitation that requires high

levels of muscle activation. We therefore speculate that the

combined effect of reduced hamstring muscle activity as well

as the interaction of the muscle length and the anatomical

location of the tendons would contribute to variations in the

acquired sEMG data during a lower limb movement, thereby

affecting the sEMG classification accuracy.

Many studies have reported an appreciable gender difference

in muscle activities, for instance, the knee extensor muscles as

well as the contact and pressure area of the patellofemoral joint

are endowed with more strength in men [49], [50]. However,

the undesirable effect due to this difference could be deterred

by including only the subjects from the same gender. It still

remains unclear how to select appropriate muscles such that

the classification inaccuracies caused by the hamstring muscles

of an individual with injured knees do not significantly impair

the overall classifier performance.

Even though the extracted features exhibit some differ-

ences across various knee disorders, it remains difficult to

ascertain this statistically due to a small sample size under

each category. We speculate that the composition of various

conditions (six with ACL, four having meniscus injury, and

one with sciatic nerve injury) to form a heterogeneous knee

pathological dataset would indeed have a negative impact on

the classification results. However, owing to the limitations

imposed by a small sample size, we could not validate this

effect. These are interesting pointers for future research, which

necessitate a larger dataset with sufficient candidates under

each type of knee pathology. In a nutshell, the results reported

by the sEMG classifier are therefore independent of the prior

knowledge that we have concerning the type of disorder.

V. CONCLUSION

An ICA-based classification scheme for lower limb sEMG

data has been designed and tested with signals recorded from

healthy individuals as well as subjects suffering from knee

pathology. The ICA-EBM technique was adopted to decom-

pose the band-pass filtered sEMG data into its constituent

MUAPs. A reduced set of time-domain features and FDs,

as recommended by a dimensionality reduction scheme, was

extracted from the source estimates. Finally, the sEMG data

was assigned to any one of the three categories—walking,

sitting, and standing—with the aid of the LDA algorithm

supplied with the feature subset.

Traditional analyses of sEMG signals from knee-support

muscles are known to suffer from poor accuracy in differ-

entiating three major tasks, i.e., walking, sitting, and standing.

On that account, this study focuses on improving the sEMG

classification accuracy by incorporating a source separation

module into the lower limb movement recognition system. As

consolidated in Table II and III and summarized in Section IV-

A, the features deduced from the sEMG sources that are

estimated via ICA-EBM have been proven to facilitate the

classifier performance significantly, when the study involved

either the normal subjects or those diagnosed with knee dis-

orders. Therefore we are led to infer that the source-separated

sEMG signals collected from the hamstring (st and bf) as

well as the quadriceps muscle (vm and rf) activities can help

accurately label the knee movement, thereby enabling one to

investigate the changes due to knee pathology. In addition to

the advantages of electromyogram listed in Section IV-B, the

sEMG-based assessment of lower limb movements is highly

desirable as it lends itself to potential applications such as

controlling exoskeleton devices to support the knee. Moreover,

it has the ability to diagnose or monitor knee pathologies and

to evaluate the effectiveness of therapy.

This study enabled us to comprehend the inherent limi-

tations of an sEMG classifier. First, the conclusions drawn
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from an experiment exclusively involving a specific gender

cannot be straightforwardly translated to participants from the

other gender. Second, as common to most studies, the clinical

feasibility of this method can only be validated with a large

sample size that would reduce any possible bias induced by a

smaller sample. Third, notwithstanding the promising outcome

in the pilot study, further research is warranted to ameliorate its

classification performance to commensurate with the stringent

requirements of prosthetic limb control. Being cognizant of

these factors, our future objective is to apply this framework

with diverse groups of individuals and also possibly with

amputee subjects by incorporating activities such as stair

ascent and descent. Aside from this, we intend to further

explore this approach with control mechanisms of neural-

controlled artificial legs for assisting lower limb amputees.
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