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ABSTRACT
Adaptive reduced-order methods are explored for simulating continuous vibrating structures. The Galerkin

method is used to convert the governing partial differential equation (PDE) into a finite-dimensional system

of ordinary differential equations (ODEs) whose solution approximates that of the original PDE. Sparse

projections of the approximate ODE solution are then found at each integration time step by applying either

the least absolute shrinkage and selection operator (lasso) or the optimal subset selection method. We apply

the two projection schemes to the simulation of a vibrating Euler–Bernoulli beam subjected to nonlinear uni-

lateral and bilateral spring forces. The subset selection approach is found to be superior for this application,

as it generates a solution with similar sparsity but substantially lower error than the lasso.

Keywords: Galerkin; lasso; reduction; shrinkage; sparse; subset selection.

MÉTHODE ADAPTIVE DE DISPERSION DE TYPE GALERKIN POUR DES STRUCTURES
CONTINUELLES EN ÉTAT DE VIBRATION

RÉSUMÉ
Des méthodes adaptives d’ordre réduit sont étudiées pour la simulation de structures continuelles en état

de vibration. La méthode Galerkin est utilisée pour convertir les équations différentielles partielles (EDP)

gouvernantes en un système dimensionnel fini d’équations différentielles ordinaires (EDO), dont la solution

s’approche de l’original EDP. Des projections dispersées de la solution EDO approximative sont ensuite

trouvées pour chaque intégration de la variable temps en appliquant soit la plus petite valeur absolue de

retrait de sélection (lasso) ou la méthode du sous-ensemble optimal. Nous appliquons les deux schémas de

projection à la simulation d’une poutre vibrante Euler–Bernoulli soumise à des tensions de ressort nonli-

néaires unilatérales et bilatérales. L’approche de sélection du sous-ensemble s’est révélée supérieure pour

cette application, parce qu’elle génère une solution similaire de dispersion, mais avec un taux d’erreurs de

dispersion considérablement plus faible que le lasso.

Mots-clés : Galerkin; lasso; réduction; retrait; dispersion; sélection du sous-ensemble.
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1. INTRODUCTION

The governing dynamics of vibrating continuous structures are described by partial differential equations

(PDEs) [1]. Several methods have been developed for solving these time-dependent PDEs, including finite

difference [2], finite element [3], and pseudo-spectral collocation [4] approaches. Spectral methods (e.g.,

the Galerkin method) involve approximating the solution using global shape functions that span the entire

domain of the solution, resulting in a system of ordinary differential equations (ODEs). If the solution

of the PDE is smooth, the solution obtained using a spectral method will converge to the exact solution

exponentially as the number of terms in the approximation is increased [4]. Thus, spectral methods naturally

lead to fewer time-dependent ODEs than finite difference or finite element approaches; however, it is often

unclear how many terms should be retained in the series solution, particularly when studying nonlinear

systems. A typical approach is to truncate the series solution using a heuristic based on the frequency

content of the external forces or the frequencies of interest in the solution. As might be expected, such

heuristics perform poorly in systems with strong intermodal coupling or when subjected to external forces

of unanticipated frequencies.

At every instant in time, the solution of the PDEs (e.g., the displacement of a vibrating structure) can be

treated as a signal in space. The theory of compressive sensing informs us that a signal can be reconstructed

using a sparse set of coefficients [5]. The present study is inspired by this theory as well as the work of

Schaeffer et al. [6], who use soft thresholding to obtain sparsity in their solutions of multiscale systems (first-

order PDEs in time). In this work, we develop an adaptive reduced-order method for simulating continuous

vibrating structures (second-order PDEs in time), and compare the least absolute shrinkage and selection

operator (lasso) with the optimal subset selection method [7]. We first discretize the governing PDE to

obtain a finite-dimensional system of ODEs whose solution approximates that of the original PDE. One of

two optimization strategies is then employed to seek the most informative sparse solution at each integration

time step. In the first case, we apply the lasso at each time step to reduce the number of nonzero coefficients

in the approximate series solution. Since the resulting optimization problem has a closed-form solution, the

reduction step can be performed with minimal computational expense. In the second case, we apply the

optimal subset selection method. We demonstrate the developed approach using a forced vibration problem

containing nonlinear modal interactions, and compare the results obtained using the lasso and optimal subset

selection strategies.

Several techniques have been developed for reducing models to their most essential components, most

of which apply only to linear or linearized systems [8, 9]. A well-known strategy for nonlinear sys-

tems is the proper orthogonal decomposition (POD) or principal component analysis [10, 11], and is

related to the sparse approaches explored herein. The POD technique uses a linear transformation to

project the original n-dimensional solution space into a k-dimensional space, k < n, where each co-

ordinate direction k j is the jth most informative and is orthogonal to the first j − 1 coordinate direc-

tions. This transformation can be used to project a dynamical system into a space of lower dimension-

ality while retaining as much information about its behavior as possible. The transformation matrix is

computed by performing a partial eigendecomposition of the mean-adjusted matrix of state vector snap-

shots. Therein lies the key difference between the POD technique and the approaches explored in this

work: the former employs a transformation matrix, which will likely need to be recomputed periodically

for highly nonlinear systems; the lasso and subset selection methods require no information from past

states.

The mathematical model for the developed approach is discussed in Section 2, where we describe the

theory in the context of a simply supported beam subjected to forces exerted by nonlinear unilateral and

bilateral springs. Note that this concrete example is used only for demonstration purposes; the theory is

equally applicable to any vibrating structure whose solution is approximated using a spectral method. Sev-
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Fig. 1. Simply supported beam of length L subjected to a nonlinear force f (t) at x = x f and a nonlinear unilateral or

bilateral spring force at x = xk. Displacements w(x, t) are obtained using classical and sparse Galerkin methods.

eral numerical test cases are presented in Section 3 to compare the efficacy of the lasso and subset selection

strategies. Conclusions are provided in Section 4.

2. MATHEMATICAL MODELING

To demonstrate the adaptive reduced-order modeling approach, we consider a vibrating simply supported

beam subjected to nonlinear unilateral and bilateral spring forces [12], as shown in Fig. 1. Using Euler–

Bernoulli beam theory [1] and assuming small deflections w(x, t), the dynamics of the beam are governed

by a single PDE:

EI
∂ 4w

∂x4
+ρA

∂ 2w

∂ t2
= f (t)δ (x− x f )− kw(xk, t)

3 δ (x− xk) (1)

where flexural rigidity is the product of Young’s modulus E and area moment of inertia I, linear mass

density is the product of density ρ and cross-sectional area A, an external force f (t) is applied at x = x f ,

and a nonlinear spring of stiffness k is located at x = xk. Under the assumption that the beam is simply

supported, we have the following boundary conditions:

w(0, t) = 0,
∂ 2w(0, t)

∂x2
= 0 (2a)

w(L, t) = 0,
∂ 2w(L, t)

∂x2
= 0 (2b)

where L is the length of the beam. The initial conditions are defined as follows:

w(x,0) = ψ(x),
∂w(x,0)

∂ t
= ϕ(x) (3)

where ψ(x) and ϕ(x) are arbitrary functions defined over the domain x ∈ [0,L]. When the spring is acting

unilaterally, it exerts force only when the beam has deflected in the negative direction at the location of the

spring, which we model by replacing k with ku:

ku =

{

k, if w(xk, t)< 0

0, otherwise
(4)

We now introduce the following parameters into Eqs. (1), (2), and (3):

x̃ =
x

L
, w̃ =

w

L
, t̃ = t

√

EI

ρAL4
, f̃ =

f L3

EI
, k̃ =

kL6

EI
(5)
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Upon substituting Eq. (5) into Eqs. (1), (2), and (3), we obtain the following nondimensional initial–

boundary value problem:

∂ 4w

∂x4
+

∂ 2w

∂ t2
= f (t)δ (x− x f )− kw(xk, t)

3 δ (x− xk) (6)

w(0, t) = 0,
∂ 2w(0, t)

∂x2
= 0 (7a)

w(1, t) = 0,
∂ 2w(1, t)

∂x2
= 0 (7b)

w(x,0) = ψ(x),
∂w(x,0)

∂ t
= ϕ(x) (8)

where we have dropped the tilde for notational convenience.

We assume the following series solution to Eq. (6):

w(x, t) = φ(x)Tη(t) (9)

where φ(x) = [sin(πx),sin(2πx), . . . ,sin(Nπx)]T are the N basis functions retained in the series solution

and η(t) = [η1(t),η2(t), . . . ,ηN(t)]
T

are the time-dependent coordinates. Note that the assumed solution

(Eq. (9)) satisfies the boundary conditions (Eq. (7)) at all time by construction. Upon substituting the series

solution (Eq. (9)) into Eq. (6), we obtain the following:

φ IV(x)Tη(t)+φ(x)Tη̈(t) = f (t)δ (x− x f )− kw(xk, t)
3 δ (x− xk) (10)

where φ IV(x) , ∂ 4φ(x)/∂x4. Applying the Galerkin method, we multiply Eq. (10) by φ(x) and integrate

over the domain, obtaining the following ODEs in time:

1
∫

0

φ(x)φ IV(x)Tdxη(t)+

1
∫

0

φ(x)φ(x)Tdx η̈(t)

≈ f (t)

1
∫

0

δ (x− x f )φ(x)dx− k
(

φ(xk)
Tη(t)

)3

1
∫

0

δ (x− xk)φ(x)dx (11)

We define mass and stiffness matrices M and K as follows:

M ,

1
∫

0

φ(x)φ(x)Tdx, K ,

1
∫

0

φ(x)φ IV(x)Tdx (12)

and recall the following property of the Dirac delta function:

1
∫

0

δ (x−ζ ) φ(x)dx = φ(ζ ) (13)

whereupon we obtain a simplified expression of the system ODEs (Eq. (11)):

M η̈(t)+Kη(t) = f (t)φ(x f )− k
(

φ(xk)
Tη(t)

)3
φ(xk) (14)
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To include the effects of energy dissipation, a Rayleigh damping [1] term with coefficients α and β is

introduced into the undamped beam model (Eq. (14)):

M η̈(t)+C η̇(t)+Kη(t) = f (t)φ(x f )− k
(

φ(xk)
Tη(t)

)3
φ(xk) (15)

where C , αM+βK. To obtain initial conditions η(0) and η̇(0), we first substitute the solution (Eq. (9))

into the initial conditions (Eq. (8)):

φ(x)T η(0) = ψ(x) (16a)

φ(x)T η̇(0) = ϕ(x) (16b)

Upon pre-multiplying by φ(x) and integrating over the domain, we obtain the following initial conditions

for Eq. (15):

η(0) = M−1

1
∫

0

φ(x)ψ(x)dx (17a)

η̇(0) = M−1

1
∫

0

φ(x)ϕ(x)dx (17b)

Finally, we introduce states η1 , η (displacements) and η2 , η̇ (velocities) to express Eq. (15) in first-order

form:
{

η̇1

η̇2

}

=

[

0 1
−M−1K −M−1C

]{

η1

η2

}

+

{

0

M−1 f (t)φ(x f )−M−1k
(

φ(xk)
Tη1(t)

)3
φ(xk)

}

(18)

The final first-order system (Eq. (18)) can be solved numerically using any integration scheme, where the

states at time t i are computed given the states and applied forces at time t i−1. Thus, at the end of time

step i, we will know the displacements η1(t
i) and velocities η2(t

i) at time t i. The continuous displacement

and velocity of the beam can then be calculated as w(x, t i) = φ(x)Tη1(t
i) and ∂w(x, t i)/∂ t i = φ(x)Tη2(t

i),
respectively.

2.1. The Least Absolute Shrinkage and Selection Operator
We wish to find a set of spatial functions ŵ(x, t i) , φ(x)Tη̂1(t

i) and ∂ ŵ(x, t i)/∂ t i , φ(x)Tη̂2(t
i) such that

the following objective functions are minimized:

J1 = min
η̂1(t

i)

1

2

1
∫

0

(

ŵ(x, t i)−w(x, t i)
)2

dx (19a)

J2 = min
η̂2(t

i)

1

2

1
∫

0

(

∂ ŵ(x, t i)

∂ t
−

∂w(x, t i)

∂ t

)2

dx (19b)

Since the basis functions in the series solution (Eq. (9)) are orthogonal, the objective functions (Eq. (19))

can be simplified as follows:

Jk = min
η̂k(t

i)

1

2

∥

∥η̂k(t
i)−ηk(t

i)
∥

∥

2

2
, k = 1,2 (20)
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where the squared 2-norm is given by the following:

∥

∥η̂k(t
i)−ηk(t

i)
∥

∥

2

2
,

N

∑
ℓ=1

(

η̂kℓ(t
i)−ηkℓ(t

i)
)2
, k = 1,2 (21)

Note that the objective functions (Eq. (20)) simply measure the error between the two solutions, and a

minimum is obtained when η̂k(t
i) = ηk(t

i), k = 1,2. We now impose a constraint and seek sparse η̂1(t
i)

and η̂2(t
i) such that objective functions J1 and J2 are minimized. The sparsity constraint [7] is introduced

by modifying the objective functions (Eq. (20)) as follows:

Jk = min
η̂k(t

i)

1

2

∥

∥η̂k(t
i)−ηk(t

i)
∥

∥

2

2
+λ

∥

∥η̂k(t
i)
∥

∥

1
, k = 1,2 (22)

where the 1-norm is given by the following:

∥

∥η̂k(t
i)
∥

∥

1
,

N

∑
ℓ=1

∣

∣η̂kℓ(t
i)
∣

∣ , k = 1,2 (23)

Shrinkage parameter λ ≥ 0 controls the amount of sparsity sought in η̂k(t
i), with λ = 0 corresponding to

the true solution. Each constrained objective function (Eq. (22)) represents a convex optimization problem,

and has the following closed-form solution [7]:

η̂k(t
i) = Sλ

(

ηk(t
i)
)

= max
{

0,
∣

∣ηk(t
i)
∣

∣−λ
}

⋄ sgn
(

ηk(t
i)
)

, k = 1,2 (24)

where Sλ is the shrinkage operator, ⋄ represents elementwise vector multiplication, and the signum function

sgn(ζ ) is defined as follows:

sgn(ζ ) =

{

−1, if ζ < 0

+1, otherwise
(25)

The closed-form solution to the minimization problem (Eq. (24)) may be recognized as soft threshold-

ing [13].

In summary, we apply shrinkage operator Sλ to the solution obtained from the numerical integrator

(ηk(t
i), k = 1,2) to obtain a sparse representation of the solution (η̂k(t

i)). The sparse solution provides

a concise representation of the system behavior, and does so with minimal computational expense. Also

note that the implementation involves simply passing the integrated states through the shrinkage operator

at each time step; there is no need to store a matrix of state vector snapshots or employ a computationally

expensive decomposition algorithm, as is the case with the POD approach. A potential drawback is that the

solutions obtained using the developed approach will deviate from the true solution, propagating absolute

error as small amounts of information are lost at each time step. In this application, a considerable amount

of sparsity can be introduced into the solution without substantially affecting the simulation results, as we

will show.

2.2. Optimal Subset Selection
We also explore the use of an optimal subset selection approach. Since the basis functions in the series solu-

tion (Eq. (9)) are orthogonal, the optimal subset selection strategy involves simply retaining the components

of the solution whose absolute values are above a specified threshold and zeroing the others [7]:

η̂kℓ(t
i) =

{

ηkℓ(t
i), if

∣

∣ηkℓ(t
i)
∣

∣> λ

0, otherwise
, k = 1,2 (26)
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which may be recognized as hard thresholding [13]. Note that subset selection also involves negligible

computational expense, is trivial to implement, and can suffer from the same error propagation issues as the

lasso. In contrast to the lasso, however, the retained components of the solution are unaltered—that is, λ is

used strictly as a threshold in Eq. (26), not as both a threshold and a scaling parameter as in Eq. (24). As

will be shown in the next section, a considerable amount of sparsity can be obtained without introducing

substantial errors, even in systems containing strong intermodal coupling.

3. NUMERICAL RESULTS

In this section, we present several numerical test cases to compare the efficacy of the lasso and subset se-

lection approaches. The constrained objective function (Eq. (22)) solved in the lasso approach is minimized

to find a sparse solution at each time step of the simulation. Since the sparse solution at time t i is used to

integrate Eq. (18) to time t i+1, the error calculated by the 2-norm in Eq. (22) is a local error metric. The er-

rors reported in this section, however, are absolute errors, which we calculate by first simulating using each

adaptive reduced-order method, and comparing the results to those observed without introducing sparsity. In

each test, the same threshold parameter is used for the lasso and subset selection strategies. All numerical re-

sults are obtained in Matlab using an explicit fourth-order Runge–Kutta method [2] with an integration time

step of t i+1 − t i = 10−4. We also fix the number of basis functions at N = 10 for each state variable, which

we found to be sufficient to achieve convergence, and use damping coefficients α = β = 0.02 throughout.

3.1. Bilateral Spring
We first consider the system shown in Fig. 1 where the spring is permanently fixed to the beam, thus acting

bilaterally. The time response of the beam at x = xk is shown in Fig. 2(a), where a nonlinear spring of

stiffness k = 1000 is attached at xk = 0.546 and an external force f (t) = 10sin(5πt) is applied at x f = 0.235;

the initial conditions are η1(0) = η2(0) = 0. As shown, the classical Galerkin method (λ = 0) and the two

sparse Galerkin methods (λ = 10−6) produce nearly identical results. Shown in Fig. 2(b) are the number of

nonzero terms in the three solutions at each integration time step. All 2N terms η1(t) and η2(t) are nonzero

throughout the simulation in the classical Galerkin solution, but the lasso and subset selection solutions are

both approximately 34% sparse. The absolute error between the classical solution and each sparse solution

is defined as follows:

e(t),
1

2

2

∑
k=1

∥

∥η̂k(t
i)−ηk(t

i)
∥

∥

2

2
(27)

as shown in Fig. 2(c). Note that the error e(t) is more than an order of magnitude lower when using subset

selection than when using the lasso, despite these solutions having nearly identical sparsity.

The amount of sparsity is highly dependent on the nature of the time response of the system. To

demonstrate, we repeat the above analysis with k = 5000, f (t) = 100sin(12.6πt), and initial conditions

η1(0) = η2(0) = 0.1; all other parameters are the same. In this case, we obtain sparse Galerkin solutions

with only 14.3% (lasso) and 13.7% (subset selection) sparsity, as shown in Fig. 3. More sparsity can be

obtained by increasing the shrinkage parameter, but not without increasing the error as well. Simulation

results using λ = 10−5 are shown in Fig. 4, where 33.6% (lasso) and 32.2% (subset selection) of the coeffi-

cients are zero but the errors have increased substantially. Note that the maximum absolute error increased

by one order of magnitude when using the lasso and by two orders of magnitude when using optimal subset

selection – although the latter still produced a more accurate solution than the former.

3.2. Unilateral Spring
The system shown in Fig. 1 is now simulated assuming the spring acts only unilaterally, as defined in Eq. (4).

We use a spring of stiffness k = 105 acting at xk = 0.55, an external force f (t) = 100sin(12.6πt) acting at
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Fig. 2. Simulation results obtained using classical Galerkin (λ = 0) and sparse Galerkin (λ = 10−6) methods with a

bilateral spring of stiffness k = 1000: (a) time response of the beam at the location of the spring, (b) number of nonzero

terms in the series solution, and (c) absolute error as a function of time. The lasso and subset selection solutions have

sparsities of 34.4% and 33.4%, and maximum absolute errors of 3.9×10−3 and 1.1×10−4, respectively.
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Fig. 3. Simulation results obtained using classical Galerkin (λ = 0) and sparse Galerkin (λ = 10−6) methods with a

bilateral spring of stiffness k = 5000: (a) time response of the beam at the location of the spring, (b) number of nonzero

terms in the series solution, and (c) absolute error as a function of time. The lasso and subset selection solutions have

sparsities of 14.3% and 13.7%, and maximum absolute errors of 3.4×10−1 and 3.4×10−3, respectively.
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Fig. 4. Simulation results obtained using classical Galerkin (λ = 0) and sparse Galerkin (λ = 10−5) methods with a

bilateral spring of stiffness k = 5000: (a) time response of the beam at the location of the spring, (b) number of nonzero

terms in the series solution, and (c) absolute error as a function of time. The lasso and subset selection solutions have

sparsities of 33.6% and 32.2%, and maximum absolute errors of 2.6 and 0.96, respectively.
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Fig. 5. Simulation results obtained using classical Galerkin (λ = 0) and sparse Galerkin (λ = 10−5) methods with a

unilateral spring of stiffness k = 105: (a) time response of the beam at the location of the spring, (b) number of nonzero

terms in the series solution, and (c) absolute error as a function of time. The lasso and subset selection solutions have

sparsities of 30.9% and 27.1%, and maximum absolute errors of 0.44 and 0.029, respectively.
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Fig. 6. Simulation results obtained using classical Galerkin (λ = 0) and sparse Galerkin (λ = 2× 10−5) methods

with a unilateral spring of stiffness k = 105: (a) time response of the beam at the location of the spring, (b) number

of nonzero terms in the series solution, and (c) absolute error as a function of time. The lasso and subset selection

solutions have sparsities of 35.6% and 32.0%, and maximum absolute errors of 7.1 and 0.96, respectively.

x f = 0.33, and initial conditions η1(0) = η2(0) = 0.1. The simulation results are shown in Fig. 5, where

we obtain sparsities of 30.9% (lasso) and 27.1% (subset selection) with shrinkage parameter λ = 10−5. As

shown in Fig. 6, doubling λ results in a dramatic increase in absolute error but only a modest increase in

sparsity, demonstrating the delicate balance between these objectives.

Finally, Fig. 7 shows the results obtained when the frequency of the forcing function increases linearly

with time. In particular, we use f (t) = 50sin((3πt)t) with λ = 10−6; all other parameters are the same

as those used to generate Fig. 6. Even in this highly nonlinear case with a time-varying forcing frequency

and strong intermodal coupling, we obtain sparsities of 18.5% (lasso) and 13.4% (subset selection) with

reasonable amounts of error. As shown in Fig. 8(a), sparsity increases approximately linearly with exponen-

tially increasing λ , and the solutions generated using the lasso and optimal subset selection approaches have

similar sparsity. The maximum error also increases with increasing λ in both cases, as shown in Fig. 8(b),

but the lasso generates solutions with errors between one and two orders of magnitude higher than subset

selection.

In summary, we obtain sparse solutions at the expense of introducing small amounts of error. The shrink-

age operator (Eq. (24)) or optimal subset selection strategy (Eq. (26)) can easily be incorporated into any

simulation code that uses spectral methods with orthogonal basis functions to solve partial differential equa-

tions. The sparse solutions obtained using the lasso and subset selection can alleviate storage requirements

while introducing errors that can be controlled by adjusting a single parameter. Our results indicate that

subset selection generates solutions with similar sparsity but substantially lower error than the lasso. Be-
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Fig. 7. Simulation results obtained using classical Galerkin (λ = 0) and sparse Galerkin (λ = 10−6) methods with a

unilateral spring of stiffness k = 105 and a forcing function with time-varying frequency: (a) time response of the beam

at the location of the spring, (b) number of nonzero terms in the series solution, and (c) absolute error as a function of

time. The lasso and subset selection solutions have sparsities of 18.5% and 13.4%, and maximum absolute errors of

5.7×10−3 and 9.0×10−5, respectively.
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Fig. 8. Simulation results obtained using the lasso and subset selection sparse Galerkin methods with a unilateral

spring of stiffness k = 105 and a forcing function with time-varying frequency: (a) sparsity (linear scale) and (b)

maximum error e(t) (logarithmic scale), both as functions of shrinkage parameter λ (logarithmic scale).

cause we always compute all coefficients in the solution, neither sparse strategy offers an advantage in terms

of computational speed; however, we discover which modes are active and which modes are insignificant

at each time step of the simulation, which is important information. We also note that Schaeffer et al. [6]

applied the lasso to PDEs that are first-order in time. We have found that, for PDEs that are second-order in

time, the subset selection approach generates better sparse solutions than the lasso.

4. CONCLUSIONS

We have explored two adaptive sparse Galerkin methods for reducing numerical solutions of vibrating con-

tinuous structures: the least absolute shrinkage and selection operator (lasso) and the optimal subset selec-

tion method. The lasso strategy seeks the most informative subset of coefficients in the series solution by

applying a shrinkage operator at each time step of a simulation. The resulting convex optimization problem

has a closed-form solution, so can be readily implemented and involves minimal computational expense.

The optimal subset selection method also involves negligible computational expense and is trivial to imple-

ment.
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A vibrating simply supported beam subjected to nonlinear unilateral and bilateral spring forces was used

to compare the two methods. In every test case explored, the sparse Galerkin solutions generated using the

lasso and optimal subset selection approaches both maintain good agreement with the classical Galerkin

solution, but subset selection consistently outperformed the lasso in terms of accuracy. Both approaches can

be applied to any vibrating structure whose solution is obtained using spectral methods. This work may be of

particular utility for model-predictive controllers, which demand computational efficiency and can tolerate

some amount of numerical imprecision.
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