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Abstract

In this work we present an adaptive polygonal finite element method (Poly-FEM) for the analysis of
two dimensional plane elasticity problems. The generation of meshes consisting of n− sided polygonal
finite elements is based on the generation of a centroidal Voronoi tessellation (CVT). An unstructured
tessellation of a scattered point set, that minimally covers the proximal space around each point in the
point set is generated whereby the method also includes tessellation of non-convex domains. In this
work we propose a region by region adaptive polygonal element mesh generation. A patch recovery
type of stress smoothing technique that utilizes polygonal element patches for obtaining smooth stresses
is proposed for obtaining the smoothed finite element stresses. A recovery type a − posteriori error
estimator that estimates the energy norm of the error from the recovered solution is then adopted for
the polygonal finite element method. The refinement of the polygonal elements is then made on an
region by region basis through a refinement index. For the numerical integration of the Galerkin weak
form over polygonal finite element domains we resort to classical Gaussian quadrature applied to trian-
gular sub domains of each polygonal element. Numerical examples of two dimensional plane elasticity
problems are presented to demonstrate the efficiency of the proposed adaptive polygonal finite element
method.

Keywords : Polygonal finite elements, a-posteriori error estimator, adaptive finite element analysis.

1 Introduction

The finite element method is a powerful numerical tool for solving partial differential equations. The use
of two dimensional triangular or quadrilateral elements and three dimensional tetrahedral or hexahedral
elements is the popular standard case. However, there are associated complexities such as developing
robust and fast algorithms for generating quality meshes on two or three dimensional complex geometries
of micro structures, distortion effects under large deformation, complexities in development and use of
higher order elements and the need for efficient quadrature schemes for the evaluation of integrals, amongst
others. The use of polygonal elements with n− number of sides will provide greater flexibility and better
accuracy to address some of these problems. Polygonal finite element discretizations can be useful in many
areas like, e.g. the nonlinear constitutive modeling of polycrystalline materials with general anisotropic or
ferroelectric [1,2] behavior where each grain is represented with its independent properties by one element,
for interface elements connecting dissimilar finite element meshes [3], for two field methods solving diffusion
equations [4], for solid mechanics problems [5] including incompressible materials [6], and for topology
optimization [7]. The recent focus in polygonal FEM has also been on generating conformal polygonal
discretizations [8–10], developing numerical integration schemes for polygonal finite element methods either
based on conformal mapping [11, 12] or generalizing Gaussian quadrature rules [13, 14], and the natural
element method for non-convex and discontinuous problems [15]. Constantiniu et al. [16] recently developed
the adaptive Delaunay tessellation, which is an extremely useful method for generating unique polygonal
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tessellations. The method has been extended by Kraus et al. [10] to include non-convex domains and
conformal interpolation techniques on polygons for solving elasticity problems.
Recent works on polygonal finite element methods include: Sukumar et al. [17] established the connec-

tions between the virtual element method (VEM) and hourglass control techniques and showed quantitative
comparisons of the consistency and stabilization matrices in the VEM to those in the hourglass control
method. Heng et al. [18] have given an approach towards the challenging task of modeling nonlinear elastic
materials with standard finite elements and have proposed an alternative approach to model finite elasticity
problems in two dimensions by using polygonal discretizations. Gianmarco et al. [19] worked on the new
perspectives on polygonal and polyhedral finite element methods. Floater et al. [20] have discussed on gra-
dient bounds for Wachspress coordinates on polytopes. An approach regarding polygonal finite elements
approximation for mixed formulations was given by Cameron et al. [21] for incompressible fluid flow. It
has been demonstrated that a certain class of approximants can be devoid of spurious modes and locking.
Cameron et al. [7] proposed a polygonal finite element procedure for topology optimization. In another re-
cent work [21] integration errors in polygonal finite element methods and its relevance from the perspective
of the patch test have been discussed. Arun et al. [22] proposed the Virtual Element Method (VEM) for the
numerical solution of boundary value problems on arbitrary polyhedral meshes and also presented several
numerical studies in order to verify convergence of the VEM and evaluate its performance for various types
of meshes. Khoei et al. [23] presented a polygonal-FEM technique for the modeling of arbitrary interfaces
in large deformations and applied it to capture discontinuous deformations in the non-conformal elements,
which are cut by the interface in a uniform regular mesh. Biabanaki et al. [24] presented a polygonal finite
element method for large deformation frictionless dynamic contact-impact problems with non-conformal
meshes. Sukumar et al. [25] presented the development of quadratic serendipity shape functions on pla-
nar convex and nonconvex polygons and maximized the objective functional subject to the constraints for
quadratic completeness. A numerical algorithm based on group theory and numerical optimization was
presented by Mousavi et al. [14] to compute efficient quadrature rules for integration of bivariate polynomi-
als over arbitrary polygons. The algorithm was used for the construction of symmetric and non-symmetric
quadrature rules over convex and concave polygons. Nguyen et al. [26] provided an approach towards
free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method.
They further extended the nCS-FEM to the free and forced vibration analyses of two dimensional dynamic
problems. Hornmann et al. [27] introduced a new generalization of barycentric coordinates that stems from
the maximum entropy principles. David et al. [28] presented a mixed-element mesh generator based on the
modified octree approach that has been adapted to generate polyhedral Delaunay meshes. Yijiang et al. [29]
presented an explicit expression of the two-dimensional element compliance matrix on the complementary
energy principle with concave polygonal meshes. Dai et al. [6] proposed a smoothed finite element method
(SFEM) using quadrilateral elements, thus the method produces very accurate stresses and desirable con-
vergence rate as compared with FEM. Kraus and Steinmann [30] presented finite element formulations for
3D convex polyhedra in nonlinear continuum mechanics. An n - sided polygonal edge based smoothed finite
element method (nES-FEM) for solid mechanics problems is discussed in [9]. Somnath et al. [31] devel-
oped a Voronoi cell finite element method to solve small deformation elastic-plastic problems for arbitrary
heterogeneous materials and conducted studies to understand the effect of size, shape and distribution of
a second phase on the averaged and true local responses of representative material elements. Zhang et
al. [32] developed a parametric variational principle based polygonal finite element method (PFEM) and
Voronoi cell finite element method (VCFEM) for numerical simulations of the elastic–plastic mechanical
behavior of heterogeneous materials under small deformation and also gave the shape functions for the
polygonal element. Sundararajan et al. [33] studied the convergence and accuracy of displacement based
finite element formulations over arbitrary polygons. Laplace interpolants, strain smoothing and scaled
boundary polygon formulation was considerd for the analysis. Andrew et al. [34] studied error estimates
for generalized barycentric interpolation. An efficient numerical scheme for the biharmonic equation by
weak Galerkin finite element methods on polygonal or polyhedral meshes has been made in [35]. Higher
order BEM-based FEM on polygonal meshes have been studied recently (see [36] and [37]).
The quality of finite element solutions is not equally good in all regions of the domain under consid-
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eration, thus making a locally finer mesh necessary. The general recognition is that a reliable numerical
approximation of the analytical solution of a given mathematical model needs the notion of discretization
errors with bounds. Initial contributions in this regard can be attributed to Babuska et al. [38] and further
works by Babuska and Rheinboldt [39], presenting a priori error estimators in the energy norm for second-
order adjoint elliptic boundary value problems. The breakthrough in error-controlled adaptivity of primal
finite element methods (the displacement approach) was achieved by Babuska and Miller [40], presenting
the a− posteriori error analysis of the discretization error for second-order elliptic problems in the global
energy norm with bounds from below and from above. Zienkiewicz and Zhu [41] presented an a−posteriori
super convergent patch recovery based error indicator [42] using explicitly calculated smoothened stresses,
assuming that the smoothened stresses are more accurate than the discretized ones [43]. This method-
ology has been used as as basis for advanced adaptive strategies in some of the recent works [44–47]. A
more detailed review on advances in error estimation strategies can be found in [48] and [49]. There has
been recent work on adaptive singular finite element [50] and refinement strategies based on asymptotic
expansions of finite element solutions [51]. The error estimates for generalized barycentric coordinates are
discussed in [52]. Gonzalez et al. [53] recently presented a mesh adaptive strategy driven by goal oriented
locally equilibrated super convergent patch recovery. These patch recovery techniques have also been used
recently in numerical implementation of strain gradient plasticity [54].
In this work we present an adaptive polygonal finite element method for the analysis of two dimensional

plane elasticity problems. The generation of polygonal finite element meshes is based on the centroidal
Voronoi tessellation (CVT). By this method an unstructured tessellation of a scattered point set that
minimally covers the proximal space around each point can be generated. The method has also been
extended to include non-convex domains. For the numerical integration of the Galerkin weak form over
polygonal finite element domains we resort to classical Gaussian quadrature applied to triangular sub
domains of each polygonal element. An adaptive refinement strategy is proposed in the present work. A
patch recovery type of stress smoothing technique that utilizes polygonal patches to obtain smooth stresses
is proposed. A classical recovery type a − posteriori error estimator that estimates the energy norm of
the error from the recovered solution is then implemented. The refinement of the polygonal elements is
made on an element by element basis via a refinement index. Numerical examples of two dimensional plane
elasticity problems are presented to demonstrate the efficiency of the proposed adaptive polygonal finite
element method.
The outline of the paper is as follows : in Section 2, after a brief review of mathematical preliminaries

we present an overview of generating the polygonal finite element mesh using CVT and details of the
extension of the methodology to non-convex domains are presented. In Section 3 we discuss the non-
polynomial type polygonal interpolant used in the present work. Section 4 presents equilibrium equations,
weak form and discretized weak form for two dimensional plane elasticity problems. A numerical integration
strategy performed by dividing the polygonal domain into triangular subdomains and then using well know
quadrature rules on a triangle is presented in Section 5. Section 6 presents the details of a-posteriori error
estimates and adaptive refinement. In the last Section 7, we present numerical examples of plane elasticity
problems and study the convergence characteristics under uniform and adaptive mesh refinement.

2 Polygonal finite element discretization

In this section we present a simple and robust method for polygonal mesh generation. The main compo-
nents of a mesh generator are an implicit description of the domain geometry and the centroidal Voronoi
tessellation (CVT) [55] used for its discretization. The signed distance function contains all the essential
information about the domain geometry and offers great flexibility to construct a relatively large class of
domains. Lloyd’s method is used to ensure uniform (optimal) distribution of seeds and thus a high quality
mesh (Talischi et al. [7]). Examples are provided to illustrate capabilities of the proposed discretization
methodology.
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2.1 Signed distance function and implicit representation

Let Ω be a subset of R2. The signed distance function associated with Ω is defined by

dΩ(X) = SΩ(X) min
Y ∈∂Ω

‖X − Y ‖ (1)

where ∂Ω denotes the boundary of Ω. ‖ ∙ ‖ is the standard Euclidean norm in R2. Here ‖X − Y ‖ is the
distance between any point X and point Y on the boundary of domain, and the sign function is given by

SΩ(X) : =

{

−1, if X ∈ Ω

+1, if X ∈ R2 \ Ω

Thus, if X lies inside the domain Ω, dΩ(X) is minus the distance of X to the closest boundary point. The
following characterizations are drawn from this definition

Ω =
{

X ∈ R2 : dΩ(X) ≤ 0
}

(2)

∂Ω =
{

X ∈ R2 : dΩ(X) = 0
}

(3)

Ω = Ω ∪ ∂Ω (4)

XOUT

XIN

Ω

∂Ω

(a)

X0

r

(b)

Figure 1: (a) For the domain above dΩ(XIN ) < 0 and dΩ(XOUT ) > 0. (b) A circular domain of radius r.

For the domain shown in Fig. 1a, consider two points XOUT and XIN which are outside and inside
the domain Ω, respectively. Thus the distance function of point XOUT is positive, dΩ(XOUT ) > 0, and
that of XIN is negative, dΩ(XIN ) < 0, implying that points XOUT and XIN are outside and inside the
domain Ω, respectively.
We can see from the discussion so far that when Ω is characterized by its signed distance function informa-
tion about Ω can be readily extracted. The essential task then is to construct dΩ(X) for a given domain
Ω that we wish to discretize. For example, if Ω is a circle of radius r centered at point X0, (See Fig.1b)
the distance function for that domain is given by,

dΩ(X) = ‖X −X0‖ − r (5)

Other useful information about the domain geometry given by the signed distance function is the
direction of the nearest boundary point, given by its gradient ∇dΩ(X). We use the property of the
gradient to find the reflection of any point X about the closest boundary point. We denote the reflection
by RΩ(X), see Fig. 2.

RΩ(X) = X − 2dΩ(X)∇dΩ(X) (6)

This reflection property is used in the mesh generation to obtain a polygonal mesh confined to a defined
geometry (Explained in Sec. 2.3).
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dΩ(X)

∇dΩ(X)

RΩ(X) = X − 2dΩ(X)∇dΩ(X)

Xb

Figure 2: Reflection of a point X about nearest boundary point Xb

2.2 Centroidal Voronoi tessellation (CVT) and Lloyd’s algorithm

Consider a set of nodes P = {P 1,P 2, . . .P M} with P I ∈ R
2. The first order Voronoi diagram V(P) of

the set P is a subdivision of the Euclidean space R2 into convex regions

V(P I) =
{

x ∈ R2 : ||P − P I || < ||P − P J || ∀ J 6= I
}

called Voronoi cells, where V(P) = ∪V(P I), as shown in Fig.3.

The above definition states that any point x in the Voronoi cell V(P I) is closer to node P I than to
any other node P J . The regularity of a Voronoi diagram is determined entirely by the distribution of the
generating point set. A random set of generators may lead to a discretization not suitable for use in finite
element analysis. Therefore, we restrict our attention to a special class of Voronoi tessellation that enjoys
a higher level of regularity, i.e., centroidal Voronoi tessellation (CVT). A Voronoi tessellation is centroidal
if for every P I ∈ P, P I = P c where,

P c =

∫

V(P I) xρ(x)dx
∫

V(P I) ρ(x)dx
(7)

and ρ(x) is any given density function defined over V(P I). For a uniform distribution of points ρ(x) = 1.
Hence in a centroidal Voronoi tessellation (Voronoi diagram), the generating point of each Voronoi cell is

P 1

P 2 P 3

P 4

P 5

P 6

P 7

P 8

P 9

Figure 3: Voronoi diagram of a given point set.
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also the centroid (center of mass) of the corresponding Voronoi region. It can be viewed as an optimal
partition corresponding to an optimal distribution of generators. A number of algorithms are available to
generate centroidal Voronoi tessellation. We adopt the simple and powerful Lloyd’s algorithm for generating
CVTs.
Lloyd’s algorithm, also known as Voronoi iteration, is a deterministic algorithm for generating CVTs. It
is an iterative process between computing Voronoi diagrams and mass centroids. It starts with an initial
distribution of a point set which is iteratively replaced by centroids of corresponding Voronoi regions. Fig.
4 and Algorithm 1 sketch the procedure.

Figure 4: Lloyd’s Algorithm : The Voronoi diagram of the current points at each iteration is shown. The
+++ sign denotes the centroids of the Voronoi cells.

Algorithm 1 Lloyd’s method

1: Initialization : Select an initial set of K points {P I}
K
I=1, represented as in Fig. 4.

2: Voronoi tessellation : Construct the Voronoi sets {V} associates with {P I}
K
I=1

3: Centroid computation : Determine the mass centroids (Eqn.(7)) of the Voronoi sets V(P I) formed
in Step 2. These centroids form a new set of points {P̄ I}

K
I=1, represented as +++ sign in Fig. 4.

4: Convergence test : If these new point set meets the convergence criterion
∑K

I=1 ‖ P̄ I−P I ‖≤ TOL,
terminate, else return to Step 2

2.3 Methodology to approximate the boundary

Assume Ω ⊂ R2 is a bounded convex domain with smooth boundary and P is a given set of distinct seeds in
Ω. To construct a polygonal discretization of Ω, we first reflect all points in P about the closest boundary
point of ∂Ω and denote the resulting set by RΩ(P)

RΩ(P) = {RΩ(P I) : P I ∈ P} (8)
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P 1

P b1

RΩ(P 1)

P 3

P 4

P b4

RΩ(P 4)

P 2
P b2

RΩ(P 2)

P b3

RΩ(P 3)

Figure 5: Voronoi edges shared between seeds and their reflection approximate the boundary of the domain.
Reflection of interior seeds, say P 4, has no effect on tracing the boundary of the domain.

Convexity of Ω ensures that all the reflected points lie outside Ω. We then construct the Voronoi diagram
of the original point set as well as its reflection. In other words, we compute V(P ∪RΩ(P)). If Voroni cells
of a point P I and its reflection have a common edge, i.e., if V(P I) ∩ V(RΩ(P I)) 6= ∅, then this edge is
tangent to ∂Ω at P bI as in Fig. 5. Therefore, these edges form an approximation to the domain boundary
and a reasonable discretization of Ω is given by the collection of Voronoi cells corresponding to the points
in P.
With this basic idea we can extend the procedure to more general domains, in particular those that are

non-convex and have piecewise smooth boundaries (presence of corner points on ∂Ω). Fig. 6 shows the
various arbitrary domains generated using the sketched algorithm.
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(a) IIT Hyderabad logo (b) Wrench Domain

(c) Horn Domain (d) Spanner Domain

Figure 6: Sample polygonal meshes generated using the CVT procedure.

3 Conforming interpolants on polygons

Though there are many interpolants defined over polygonal domains, we prefer to use the Laplace inter-
polant in our analysis owing to its ease and simplicity. Consider a set of K nodes P I = (PIx, PIy) in a
domain Ω ∈ R2. At any point P = (Px, Py) inside Ω or on its boundary ∂Ω a set of associated interpolants
φI(P ) is defined. Using this, an interpolation scheme for a scalar-valued function f(P ) can be written as

fh(P ) =

N
∑

I=1

ΦI(P )fI (9)

where fI = f(P I) are the function values at the K nodes of the polygon. The function ΦI(P ), satisfies
properties such as partition of unity, interpolation and linear completeness inside the polygon and on the
boundaries. Various geometric measures like edge length, signed area, and sine or cosine of the angles at
each vertex of the polygon are used to construct polygonal interpolants. The Laplace natural neighbor
interpolant is the simplest and most popular Voronoi based interpolation method on polygonal domains
[56–58]. The scheme, originally based on the concept of natural neighbors [59], is widely applicable for
polygonal domains owing to its ease of implementation, and ability to account for a density distribution of
nodes in a discretization. Fig.7 shows the Voronoi cells for an added point P within a (canonical) polygonal
domain with six nodes. The Laplace interpolation functions [57] are defined using the geometric properties
of the Voronoi cell as

φLI (P ) =
wI(P )

∑N
J=1 wJ(P )

(10)

wI(P ) =
sI(P )

hI(P )
(11)
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P

P 6 P 5

P 2 P 3

P 1
P 4

h1

s1

Figure 7: Voronoi based geometric measures for the Laplace interpolant: length of the associated Voronoi
edge sI , and the Euclidean distance hI to the evaluation point P .

where sI(P ) is the length of the associated Voronoi edge and hI(P ) = ‖P −P I‖ is the Euclidean distance
from node P to node I, see Fig. 7. As only lengths of the Voronoi cells are taken into account, this method
belongs to the class of non-Sibson interpolants. The Laplace interpolant φLI on a canonical domain Ω0, in
which all nodes are regularly distributed on a unit circle, is shown in Fig. 8.

I

(a)

I

(b)

Figure 8: Laplace interpolant on a) canonical hexagonal domain b) Physical polygonal domain .

4 Linear Elasticity : Governing equations and weak form

We consider the displacement field u(X) of a body described by an open bounded domain Ω ⊂ R2, see
Fig. 9.
On the Dirichlet boundary Γu the displacements ū are given, whereas the Neumann boundary Γσ is

loaded by the prescribed surface forces t̄. For small displacements, the governing equations are given by

div σ + b = 0 in Ω (12a)

subjected to boundary conditions
u = ū on Γu (12b)
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Ω

u = u on Γu

Γ

σ ∙ n = t
n

Figure 9: Two dimensional elastic body

t = σ ∙ n = t̄i on Γσ (12c)

with the body force per unit volume b and the unit outward normal n to Γσ.
The stress tensor for linear elasticity follows from σ = D : ε with the strain tensor ε = 1

2 [∇u +∇T u] and
the material moduli tensor D. For a homogeneous isotropic material with the Navier-Lamé parameters λ
and μ, we obtain

D = λ1⊗ 1 + 2μI. (13)

Where 1 is the second order identity tensor and I is the symmetric fourth order identity tensor. The weak
form is consequently expressed as

∫

Ω

σ(u) : ε(η) dΩ =

∫

Ω

b ∙ η dΩ +

∫

Γ

t̄ ∙ η dΓ. (14)

For the discretization a displacement trial solution of the form uh ∈ V =
[

H1(Ω)
]2
is chosen together with

a set of kinematically admissible test functions ηh ∈ V0 =
[

H1
0 (Ω)

]2
, vanishing on the Dirichlet boundaries.

The trial and test functions are represented as linear combinations of C0 continuous interpolation
functions,

uh(X) =

N
∑

I=1

φI(X)uI and ηh(X) =

N
∑

I=1

φI(X)ηI , (15)

On substituting the trial and test functions and using the arbitrariness of nodal variations, the discrete
system of linear equations

Ku = f (16)

is obtained with the stiffness matrix

K =

∫

Ωh

BT DB dΩh (17)

and the external load vector

f =

∫

Γh

φT t̄ dΓh +

∫

Ωh

φT b dΩh (18)

where the matrix of the shape functions and the shape function derivatives are given by

BI =





φI,X 0
0 φI,Y

φI,Y φI,X
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and the material moduli tensor in Voigt notation for an isotropic linear material and plane stress condition
reads

D =
E

1− ν2





1 ν 0
ν 1 0
0 0 1−ν

2





5 Numerical integration of the weak form

Numerical integration of the Galerkin weak form is required to be performed over the polygonal domain
for evaluating the integrals given in Eqn.(17) and Eqn.(18). The standard Gaussian integration rule is used
for finite elements and for mesh free methods based on background cells. However for non polynomial type
shape functions where barycentric coordinates are used, the Gaussian quadrature cannot guarantee exact
results. Presently the state of the art includes the following methods for performing numerical integration
over polygonal domains:

• Partitioning of the physical polygonal element domain Ω into N triangular subdomains and perform-
ing numerical quadrature on the physical subdomains [16, 60],

• Partitioning of the canonical polygonal element domain Ω0 into N triangular subdomains and per-
forming numerical quadrature on the canonical subdomains with isoparametric mapping [60, 61],

• Cubature rules for irregular n-gons [62, 63] based on triangles [64, 65] or conformal mapping [11,12],

• Generalized quadratures rules [66] on triangles or polygons based on symmetry groups and numerical
optimization [14, 67–69].

In the present work we apply for simplicity the first two approaches and will apply our interpolants
φI for which in particular interpolation on physical elements is permitted. Any n-gonal domain may be
decomposed into n pairwise disjoint triangular subdomains Ω̄ and then any integration of a function ψ on
a physical domain Ω can be written as

∫

Ω

ψ dΩ =
∑

n

∫

Ω̄

ψ dΩ̄ (19)

=
∑

n

∫

Ω̄0

ψ |J | dΩ̄0 (20)

=
∑

n

∫

Ω⊳

ψ |J ||J⊳ | dη̄ dξ̄ (21)

and thereby be pulled back for integration either on a triangle in the canonical domain Ω0 or a generic
triangular domain Ω⊳. (19)-(21) may individually be integrated with any adequate quadrature scheme. We
select classical 2d Gaussian quadrature defined on a generic triangular domain with nG⊳ quadrature points
on each of the N subdomain triangles. For the application of (19) and (20) the Gauss points pG⊳ and the
associated weights wG can also be mapped into the appropriate domains Ω or Ω0, respectively.
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1

1

1

1

ξ̄

η̄

pG⊳

pG0

pG

ξ

η

Ω⊳

Ω0

Ω

x

y

J⊳

J

J⊳J

Figure 10: Numerical integration based on partition of the canonical Ω0 or the physical element domain Ω
and mapping of quadrature points from a generic triangular domain Ω⊳.

6 Error estimation and Adaptivity

Adaptive techniques seek to construct reference solutions, define error norms and in general create a
more accurate and reliable numerical solution by using a feed back strategy incorporating these reference
solutions and error norms. A − posteriori estimates are more popular because of their robustness, they
use the computed solution uh in order to determine an estimate of the form ‖u − uh‖ ≤ tol where tol is
simply a number. These are also useful to perform adaptive mesh refinement.

6.1 A-posteriori error estimate

To assess the ability of polygonal finite elements to represent linear displacement fields, we first perform a
displacement patch test. We use L2(Ω) and H1(Ω) norms of the displacement error to assess the perfor-
mance of the polygonal finite element method. The L2(Ω) and H1(Ω) error norms are defined as follows

‖u− uh‖L2(Ω) =

√

∫

Ω

[u− uh]T [u− uh] dΩ (22)

‖u− uh‖H1(Ω) = ‖u− uh‖L2(Ω) +

√

∫

Ω

[∇u−∇uh]T : [∇u−∇uh] dΩ
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where u and uh are the exact and numerical displacements respectively.
In finite element methods, usually C0 (or C1 for some plate and shell elements) functions are used for
the interpolation of the unknown function (i.e. displacements); this however entails a discontinuity in
the derivatives across the element boundaries which gives rise to discretization errors. A post-processing
procedure (for instance see [70], [71] and [41]) that uses these discontinuous derivatives to create smoothed
functions in the error estimation process is then adopted. The discrepancy between element by element
fields and smoothed fields serves as a measure of the discretization error. For this purpose, and then for
deciding how the discretization can be improved, the smoothed field is regarded as the most accurate result
the current mesh can provide. In the present work we use a patch recovery technique to obtain smoothed
quantities.

The super convergent patch recovery technique was proposed by Zienkiewicz and Zhu ( [43] and [42]).
The basis of the method lies in the least square fit of an unknown polynomial over a patch of elements at
sampling points. The smoothed stress field, σ⋆ over a patch can be written as,

σ⋆ = [P ]{a} (23)

Where [P ] is the basis of an assumed polynomial, and {a} contains generalized co-ordinates to be de-
termined. Different values of the ai in {a} are obtained for different stress components. To determine
{a} and thus define a smooth stress field, for the patch selected we sample the element stress field σ at
locations where it is likely to be most accurate and these points are generally Gauss points denoted as
super convergent points. A least square fit of expansion Eqn.(23) to finite element solutions σ obtained at
sampling points over the patch is then made. Thus, we minimize the functional

Π =

nsp
∑

j=1

[σ − [P ]{a}]2 (24)

where, nsp is the number of Gauss points in the patch. When {a} has been computed, the smoothed stress
σ⋆ can be evaluated at any point inside the patch by substituting X and Y coordinates of the point in
Eqn.(23).
The global energy norm ‖U‖ is defined as

‖U‖ = [

m
∑

i=1

∫

{σ}Ti D
−1 {σ}i dΩ]

1

2 (25)

The corresponding error in the energy norm then follows as

‖e‖ = [

m
∑

i=1

∫

[{σ}⋆i − {σ}i]
T
D

−1 [{σ}⋆i − {σ}i] dΩ]
1

2 (26)

Where m is number of elements in the region of a structure whose error is to be estimated.
As an alternative to ‖U‖ and ‖e‖ one can work with L2 norm quantities. They are obtained from the
foregoing expression by omitting the weighting matrix D.

‖U‖L2
= [

m
∑

i=1

∫

{σ}Ti {σ}i dΩ]
1

2 (27)

‖e‖L2
= [

m
∑

i=1

∫

[{σ}⋆i − {σ}i]
T [{σ}⋆i − {σ}i] dΩ]

1

2 (28)
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Where, {σ⋆}i is the smooth stress field obtained from the patch recovery technique and {σ}i are the finite
element stresses. The relative error η used to quantify the discretization error over a patch of elements or
the entire mesh, can then be defined as

η =

[

‖e‖2

‖U‖2 + ‖e‖2

]

1

2

(29)

The possible range of η is 0 < η < 1.

6.2 Adaptive Meshing

The goal of adaptive meshing is to achieve a desired accuracy by refining a mesh where necessary and to
coarsen where necessary in an iterative process. Automation of the process requires numerical indication
on where and how to refine the discretization and a termination criteria. In our analysis we have used the
relative error norm η described in Section 6.1, as a criteria for adaptivity.
A possible termination criteria is that the final value of η must not exceed an allowable value ηall in the
final mesh. The average value of ‖U‖2 + ‖e‖2 per element, in combination with ηall, provides an allowable
value of error, ‖ei‖all in an element. Thus from Eqn.(29), with m the number of elements in the mesh, the
allowable error in a single element can be calculated as

‖ei‖all = ηall

[

‖U‖2 + ‖e‖2

m

]

1

2

(30)

We then calculate ξ for each element, which is the ratio of the actual value of ‖ei‖ in a typical element to
the allowable value

ξi =
‖ei‖

‖ei‖all

(31)

The result ξi > 1 indicates that more elements are needed in that location. After the first cycle, any
element with ξi < 1, is ignored while attention is directed towards refinement of elements for which ξi > 1.
With χi a characteristic element dimension, the desired new size of the element i is taken as

(χi)new =
(χi)old

ξi
(32)

In our work, the area of the element is considered as the characteristic element dimension χ. Consider an
initial coarse mesh as in Fig. 11(a) formed by the point set P. Compute the finite element solution σ for
this mesh and calculate the allowable error ‖ei‖all, (Eqn.(30)) for each element in the mesh. Furthermore
calculate ξi using Eqn.(31), for all the elements in the mesh. Fig.11(a) highlights the elements of the initial
mesh with ξ > 1, indicating these elements need to be refined. For these elements we calculate (χi)new,
as in Eqn.(32). To reduce the element size to (χi)new, extra seeds (say Pi) are randomly introduced in
the erroneous elements where ξi > 1. The initial point set P is updated with newly introduced seeds Pi

to get an updated point set, Pnew. The new mesh generated with this updated point set is shown in Fig.
11(b). This process is repeated until η < ηall . The steps in the iterative adaptive strategy are explained
in algorithm 2.
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(a) (b)

Figure 11: Adaptive refinement of a block. (a) Initial mesh with point set P0, elements targeted for
refinement with ξi > 1 are marked in red. (b) Refined mesh with updated point set Pnew

Algorithm 2 Algorithm for Adaptive strategy

1: Create an initial coarse mesh in Ω with random initial point set P
2: Compute the finite element solution σ.
3: Compute the relative error η for the mesh as in Eqn.(29).
4: if η > ηall then

5: for all Elements do
6: Compute allowable error ‖ei‖all as in Eqn.(30).
7: Compute ξi as in Eqn(31)
8: if ξi > 1 then
9: Reduce the element size to (χi)new as in Eqn.(32) by introducing new set of random points
Pi in that element

10: Update Pnew ← P + Pi

11: end if

12: end for

13: end if

14: Generate new mesh with updated point set Pnew

15: Go to step 2
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7 Numerical Examples

In this section, first we study the ability of the proposed method to represent a linear displacement field
via the displacement patch test. Next the adaptive procedure given above is employed to refine the initial
mesh, in order to get a desired mesh (η < ηall). We consider three numerical examples under plane
stress conditions to demonstrate the proposed method. Numerical integration on an n−sided polygon
is performed using 3 × 3 Gauss quadrature rule on n− sub - triangles of a n sided polygon. In all the
considered examples we use a modulus of elasticity E = 70000 Mpa and Poisson’s ratio, ν = 0.3.

7.1 Displacement Patch test

As a first example, we study the ability of polygonal finite elements to represent linear displacement fields.
We consider a unit square domain, as shown in Fig. 12. The test is performed by applying displacements
of ux = Xi and uy = Yi on the boundary nodes of a unit square domain. The displacement error norms,
L2 and H1 are calculated for four different meshes shown in Fig.13. The values of L2 and H1 norms are
tabulated in Table 1. The results reveal that the patch test is passed. The L2-norm and H1-norm of the
displacement error are shown in Table 1.

Ω

u = u on Γu

Figure 12: Unit square domain subjected to displacement field of ux = Xi and uy = Yi on the boundary.

Table 1: L2 and H1 norm for displacement patch test

Mesh DOF L2 norm H1 norm

a 42 2.21E-05 2.84E-04
b 82 1.62E-08 5.49E-06
c 160 1.53E-12 6.44E-08
d 318 9.74E-14 7.03E-12
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Figure 13: Different meshes considered for displacement patch test (a) Mesh with 10 elements,(b) Mesh
with 20 elements,(c) Mesh with 40 elements,(d) Mesh with 80 elements.

7.2 Plate with a Circular hole

A non-convex plate with a traction-free circular hole is considered (edge length 2ℓ, hole radius a = ℓ
6 ).

Fig.14 shows the quarter plate loaded by unidirectional tension σ0 = 100 Mpa in X - direction on the right
edge. Due to symmetry, Dirichlet boundary conditions are imposed along AB(uy = 0) and DE(ux = 0).
In polar coordinates the exact stress field for an infinite plate with a hole is given by

σxx(r, θ)

σ0
= 1−

a2

r2

[

3

2
cos 2θ + cos 4θ

]

+
3a4

2r4
cos 4θ

σyy(r, θ)

σ0
= −

a2

r2

[

1

2
cos 2θ − cos 4θ

]

−
3a4

2r4
cos 4θ (33)

σxy(r, θ)

σ0
= −

a2

r2

[

1

2
sin 2θ + sin 4θ

]

+
3a4

2r4
sin 4θ

The corresponding displacement components are

ux(r, θ) =
a

8μ

[

r

a
(κ+ 1) cos θ + 2

a

r
((1 + κ) cos θ

+cos 3θ)− 2
a3

r3
cos 3θ

]

(34)

uy(r, θ) =
a

8μ

[

r

a
(κ− 3) sin θ + 2

a

r
((1− κ) sin θ

+sin 3θ)− 2
a3

r3
sin 3θ

]

(35)

with κ = 3 − 4ν. In the numerical computations, we consider a = 10mm, ℓ = 60mm and the Laplace
interpolant φLI . As a termination criteria we have chosen ηall = 5%.
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Figure 14: Quarter plate with circular hole under tension with symmetry axes

The initial discretization being the coarsest has 24 elements with 104 DOF . Following the procedure
described earlier we perform an uniform and adaptive refinement on this initial coarse mesh. Fig .16 and
Fig. 17 show the different meshes obtained due to uniform and adaptive refinements respectively.
Fig. 22 shows a plot of the relative error norm vs the number of degrees of freedom for the plate with
hole example. It is seen in the graph that the initial coarse mesh having 104 degrees of freedom, has a
η = 17.9%. Adaptive refinement reaches the criteria of η < ηall (5% in this case) at 712 degrees of freedom,
while it takes 1400 degrees of freedom for uniform refinement to satisfy the same criteria. We see that
adaptive refinement converges at a relatively higher rate than uniform refinement. The stress plots for the
plate with a hole example are shown in Fig. 18.
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Figure 15: Plot of relative error norm η for Plate with a circular hole problem

Figure 16: Meshes generated due to uniform refinement of the plate with a circular hole domain
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Figure 17: Meshes generated due to adaptive refinement of the plate with a circular hole domain

(a) (b)

Figure 18: Stress plot for plate with a circular hole problem on the finest adaptive refined mesh. (a)σxx

(b)σyy
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7.3 L- shaped domain

A L-shaped specimen of the dimensions as shown in Fig. 20 is considered. The specimen is subjected to a
prescribed displacement (ux = 10mm) and (uy = 10mm) along the two legs. To prevent rigid body motion
all the deformation degrees of freedom at the re-entrant corner A, are additionally fixed. In the numerical
computations we consider ℓ = 100mm with the Laplace interpolant φLI . As a termination criteria we have
chosen ηall = 10%. The initial discretization being the coarsest has 25 elements in the domain with 108

Figure 19: L -shaped specimen.

DOF. We perform uniform and adaptive refinement on this coarse mesh. Fig. 21 and Fig. 22 shows the
different meshes obtained due to uniform and adaptive refinement. Fig.27 shows a plot of the relative error
norm vs number of degrees of freedom for the L - shaped specimen example.

It is seen from the graph that the initial coarse mesh having 108 degrees of freedom, has an error of
29.7%. We also note that there is no much difference between the convergence rates of both the methods
during the initial stages. This can be attributed to the fact that, initially most of the elements in the L
- shaped domain are erroneous, i.e, ξi > 1, so that even in the adaptive refinement most of the elements
are refined. After sufficiently many refinements, however, adaptive refinement steeps off and reaches the
criteria of η < ηall(10%in this case) at 2950 degrees of freedom, while even at 3000 degrees of freedom for
the uniformly refined mesh the error is 13.2%, which is greater than ηall.
The stress plots for the L shaped domain example for the finest adaptive mesh are shown in Fig.23.
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Figure 20: Plot of relative error norm η for L shaped domain problem.

Figure 21: Meshes generated due to uniform refinement of L shaped domain.
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Figure 22: Meshes generated due to adaptive refinement of L- shaped domain

(a) (b)

(c)

Figure 23: Stress plot for L - shaped domain problem for the finest adaptive mesh.
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7.4 Bracket problem

As a last example we consider a mechanical connection as shown in Fig 25. The bracket has 2 bolt holes
and all degrees of freedom along the bolt holes are restrained and are subjected to 2 point loads at the tips.
In the numerical computations, we consider ℓ = 100mm, a = 50mm and bolt holes of diameter 25mm,
i.e, b = 12.5mm, P = 500N with the Laplace interpolant φLI . As a termination criteria we have chosen
ηall = 15%.

Figure 24: Mechanical connection.

The initial discretization being the coarsest has 29 elements with 118 DOF. We perform uniform and
adaptive refinement on this mesh. Fig. 26 and Fig. 27 show the different meshes obtained due to uniform
and adaptive refinement, respectively.
Fig. 25 shows a plot of the relative error norm vs the number of degrees of freedom for the bracket

example. It is seen from the graph that the initial coarse mesh having 108 degrees of freedom has an error
of 49.7%. We can observe from the graph that the criteria of η < ηall (15%in this case) is achieved at 3070
degrees of freedom with adaptive refinement, while even at 3900 degrees of freedom the uniformly refined
mesh possesses an error of 17.8%, which is greater than ηall. The stress plots for the bracket problem for
the finest adaptive mesh are shown in Fig. 28.
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Figure 25: Plot of relative error norm η for Bracket problem.

Figure 26: Meshes generated due to uniform refinement of bracket domain.
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Figure 27: Meshes generated due to adaptive refinement of bracket domain.

(a) (b)

(c)

Figure 28: Stress plot for bracket problem for the finest adaptive mesh.
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8 Conclusions

In this work we presented an adaptive polygonal finite element method (Poly-FEM) for the analysis of
two dimensional plane elasticity problems. The generation of the polygonal finite element mesh is based
on the generation of a centroidal Voronoi tessellation (CVT). The method has been extended to include
tessellations for non-convex domains. In this work we have implemented a region by region adaptive
polygonal element mesh generation. A patch recovery type of stress smoothing technique that utilizes
polygonal element patches for obtaining smooth stresses has been proposed. A recovery type a−posteriori
error estimator that shows the energy norm of the error from the recovered solution is then computed for
the polygonal finite element method. The refinement of the polygonal elements is made on an region by
region basis through a refinement index. For the numerical integration of the Galerkin weak form over
polygonal finite element domains, we resort to classical Gaussian quadrature applied on triangular sub -
domains of each polygonal element. Numerical examples of two dimensional plane elasticity problems are
presented to demonstrate the efficiency of the proposed adaptive polygonal finite element method. It is
clearly seen from the trends in the numerical results that the proposed adaptive polygonal FEM results in
flexible discretization, with less number of degrees of freedom than uniform refinement. The convergence
characteristics indicate reduced error norms when compared to uniform refinement together with faster
rates of convergence.
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