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a  b  s  t  r a  c t

Preservation of  the anatomical  structures  during  denoising of medical images  is a very  significant  and

challenging operation. Corruption of magnetic  resonance image  (MRI) by  Rician  noise is inherent  to the

acquisition  process,  affecting  diagnosis. In  this study,  we present a  novel filtering methodology  that

removes Rician  noise  from  MRI by  estimating  the  local noise variance,  which  drives the  diffusion  pro-

cess  of the  filter.  In  our methodology,  the  adaptation of statistical  edge  stopping  function captivates

the  preservation condition  of the  anatomical  structure of the  MRI  images. The results obtained  on

synthetic/simulated  MRI datasets  (3D) and real  MRI datasets  confirm  the  accuracy  and  robustness of

the  proposed methodology.  Compared  to the  benchmark  approaches  like  BM4D,  LTA3D,  RNOLMMSE,

ROLMMSE,  MNL-tSVD and  PRINLM3D, the  optimized  way  of  choosing  the  edge stopping  functions, the

automatic adjustment  of the  filtering coefficients  and variance  based  local noise estimation  technique

lead  to a  qualitative  and quantitative  robust  estimation  performance,  in case  of both  simulated  and  real

datasets.
© 2020 Elsevier  Ltd. All  rights  reserved.

1. Introduction

MRI  images are generally corrupted with a random noise that

is accumulated during the acquisition process. This random noise

drastically reduces the quality of acquired image and limits the

accuracy of quantitative measurements of the magnetic reso-

nance image (MRI) data. Besides it also affects the effectiveness

of automatic computer analysis such as classification, registration,

and segmentation. Thereby, making noise reduction a  crucial pre-

processing step for MRI  images for proper clinical and research

investigations. Several literatures on denoising filters have been

proposed over the past decades dedicated to restore the MR images

[1].

For denoising MRI  images, a  very well-known filtering approach

namely anisotropic diffusion filter is  used [2].  Sijbers et al. [3]

have shown the methodology to reduce the bias by incorporat-

ing the Rice distribution into the noise filtering procedure for MRI

data. McGibney and Smith [4] introduced signal and noise level

descriptions in terms of their root-mean-square values for denois-

ing. Wavelet based filters also works well for denoising specific type
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of MRI  images like f-MRI and T2-weighted MRI [5].  Krissian et al.

[6] modeled a flux based diffusion filter for computed tomography

(CT) and MRI  data. The edge preservation was  further improved

by introduction of non-local means (NLM) filter, which was  first

proposed by Buades et al. [7] in  2005. Further modification in fil-

tering process has been performed by applying directed principle of

curvature on the NLM filter [8].  This has been followed by  formu-

lation of an estimation based filtering known as linear minimum

mean square error (LMMSE) proposed by Aja-Fernández et al. [9]

for denoising Rician noise for MRI data. To mitigate the existing

parameter initialization problem in  [8],  Manjón et al.  [10] proposed

the parametric NLM filter (PRINLM) where the number of initializa-

tion parameters has been reduced. Following this an optimized 3D

blockwise NLM filtering was  proposed by Coupé et al. [11],  which

highly depends on the initialization of parameters. Further, Krissian

and Aja-Fernández [12] introduced standard deviation of  noise in

the mean square estimation to create a  modified version of  linear

minimum mean square error estimation procedure mentioned in

[9].

Manjón et al. [13] has modified the existing NLM filter into a

three dimensional rotational invariant one. Bhujle et al. [14] addi-

tionally introduced Laplacian of Gaussian filter in conjunction with

NLM for filtering MRI. Golshan et al. [15] introduced a  method to

denoise MRI  data, which is  capable of choosing the samples, not
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only from a local neighborhood but also from a  large portion of a

given region of pixels. Fu et al. presented a  novel noise reduction

method for 3D MR images based on low-rank tensor approximation

[16].  But these filtering processes could not preserve the global and

local structure of the MRI  image simultaneously. Hu and Jiliu Zhou

[17] removed the parameter initialization problem of NLM filter by

introducing random sampling non-local mean (SNLM) algorithm,

an  optimized version of the NL-means filter for MRI  noise removal.

Pal et al. [18] proposed a diffusion based filter in addition to control

the diffusion coefficient parameter responsible for diffusion filter-

ing of the MRI. Baselice et al. [19] proposed a  Maximum posterior

estimator, adaptation to Markov random fields, developed for han-

dling complex MRI  data. Bayesian mean square error (BMSE) of the

LMMSE estimator for volumetric MRI  data denoising proposed by

Golshan and Hasanzadeh [20].  Further Sudeep et al. and Yaghoobi

et al. came up with a  modified LMMSE  estimator for filtering 3D-

MRI  images [21,22].  Very recently Baselice et al. proposed statistical

distances (Kolmogorov–Smirnov distance) based NLM filter for MRI

image data [23].  Sparse representation in transform-domain based

filtering has also become a  popular approach for image denoising

Dabov et al. [24]. These type of filtering is  based on the working

principle of shrinkage of the transform spectrum, and inverse 3-

D transformation. Further Maggioni et al. [25] in 2013 developed

a 4-D transform-domain filter for volumetric MRI  data computa-

tion. Recently, higher-order singular value decomposition (HOSVD)

became a very popular approach for MRI  image denoising. Rajwade

et al. [26], Zhang et al. [27] and Khaleel et al. [28]  proposed a  3D

tensor-SVD for filtering MRI.

Kong et al. introduced a 4-D nonlocal transform-domain which

is a modified nonlocal tensor-singular value decomposition tech-

nique, for denoising 3D MRI  data [29].

Various popular techniques for filtering Diffusion Tensor MRI  do

exists. Lam et al. [30] reduced the Rician noise from DT-MRI data

using Rank and Edge Constraints.

Recently Xia et al. [31] proposed a  new denoising algorithm

based on low-rank matrix approximation (LRMA) with regulariza-

tion of weighted nuclear norm minimization (WNNM) to remove

Rician noise of MR  images. Though the NLM-based 3D MRI  [32] fil-

ters can preserve edges better but it involves more computation

time and includes an extra optimization variable as initialization

parameter. The overall procedure can be interpreted as a  progres-

sive approximation in which the Rician noise denoising filter directs

the remarkable search towards the solution.

The major challenges faced in the gradual improvement of MRI

filtering in the past three decades are:

• Effectiveness of most of the denoising algorithms depend on error

correction procedure present in signal to  noise ratio (SNR) for

noise estimation. This could not  address the region based local

noise variance.
• Requirement of additional parameters and its major dependence

on the initialization of parameter.
• Its inefficiency in preserving the local and global anatomical

structure.

To address the mentioned challenges we started investigating

the local noise variance information for the estimation of the noise

magnitude to be  controlled by diffusion process through biweight

estimator [33].

In this study, we propose a Rician noise removal filtering

methodology, which takes into account the local noise statistical

variance and controls the denoising through diffusion process. This

local statistical variance information is utilized in the proposed

biweight function (influenced by  Tukey’s) estimator, which addi-

tionally assists in preserving the edges as well as the fine texture

information [34]. The proposed methodology is coined as adap-

tive diffusion-based MRI filter (ADMF3D). The implementation of  the

proposed ADMF3D is  to provide an estimate of the Rician noise

variance Var(P) from the noisy data It . After noise estimation stage,

ADMF3D is  implemented in  two  stages, namely smoothing process

and an adaptive diffusion-based filtering stage. The work-flow dia-

gram as described above of our proposed methodology is  illustrated

in Fig. 1.  The main highlights of our contribution are as follows:

• Tuning of diffusion coefficient, which controls the averaging

process has been made adaptive, reducing its dependency on

external additional parameters (explained in  Section 3.1).
• Applied a  statistical edge stopping function to  preserve the details

of anatomical structure of the MRI  image both locally and globally

(described in  Section 3.2).
• We propose variance based local noise estimation methodology.

Subsequently, extraction of local noise information influences the

diffusion process leading to more efficient denoising (explained

in Section 3.3).

We  have also compared our methodology with some state-

of-the-art techniques using synthetic and real (3D) MRI data

respectively.

The paper is  organized as follows. Section 2 describes the

theoretical background and properties of Rician noise present

in MRI  image. Section 3 introduces the proposed local variance

based estimator and adaptive diffusion-based MRI  filter (ADMF3D).

Experiments and results are discussed in Section 4.  In this same

section we have compared our result with other benchmark algo-

rithms. Lastly, Section 5 conclude and discuss future scopes of  the

proposed methodology.

2. Theoretical background

A  typical MRI  image consists of a  real and an imaginary part,

which are reconstructed from the acquired data by the complex

Fourier transform [35]. According to Henkelman [36] the uniform

region of complex MRI  image data M,  in which the signal from the

jth pixel, can be expressed as:

Mj =  MRj + iMIj (1)

where (MR) and (MI)  are the real and imaginary parts respec-

tively. The associated noise distribution in  a MRI  image follows the

Rice probability distribution [37,38] and can be expressed with the

probability density function as [36]:

f (P|m, �R) =
P

�2
R

exp

(

−(P2 +  m2)

2�2
R

)

I0

(

Pm

�2
R

)

(2)

where �R is the Gaussian noise standard deviation in  the complex

domain of M, P is the measured pixel intensity, m denotes the mag-

nitude of intensity, m =
√

M2
R + M2

I and I0 represents the modified

Bessel function with zeroth order of the first kind [39].

In case, if both the real and the imaginary parts have no sig-

nal, i.e. m → 0,  it indicates that the signal to noise ratio (SNR) is

very small, i.e. m/�R →  0. Thus, the Rice probability distribution

becomes Rayleigh probability distribution, given by Eq. (3) [40]:

f (P, �R) =
P

�2
R

exp

(

−
P2

2�2
R

)

(3)

To eliminate the noise present in  an image, it is important to

estimate its quantity. It  is well known that MRI  images are often

corrupted with Rician noise  and various methods exist to estimate

it. The most conventional and well known approach for such an

estimation is  to find the signal to noise ratio of the second order

moment in a Rician distribution [7].
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Fig. 1. Flow-diagram of the proposed ADMF3D algorithm.

The  signal is  estimated as: N =
√

� + 2�2
R , where � is the

order of moment. Some state of the art approaches like NLM

[13], maximum likelihood estimation (ML) [41] exists based on the

random nature of the Rician noise. Among them, one of the tech-

niques namely linear minimum mean square error (LMMSE) [9]

used by Aja-Fernández is worth mentioning. Some moment based

estimation techniques with multiple order do exist. First order

moment, based on Rayleigh distribution as shown in Eq. (3),  uses

noise standard deviation. Second order moment based Rician noise

estimation has been recently used [18]. Coupé [42] proposed a

wavelet based median absolute deviation (MAD) estimator for

Rician noise with �R = MAD(||Y ||)
0.6745 and �̂R =

√

�R/�(�) where Y is

the wavelet coefficients of the HHH sub-band, HHH denotes the

high sub-bands, � is the SNR value and � is  the correction factor

[43].

Generally, estimation methodology can be grouped into two

broad categories namely, background and object based. Back-

ground based method works in  assumption that the background

is void of any information (i.e. no signal) and the object based

method assumes the presence of Gaussian noise mixed with the

object under consideration.

However, these methodologies are  more prone to error inser-

tion, since they are approximation based. Therefore, as an

alternative solution we propose a novel methodology which

computes local Rician variance based on second order moment,

irrespective of background and object (which is  Gaussian noise in

complex domain in MRI  images).

3. Proposed methodology

3.1. Adaptive diffusion-based MRI  filter

Our primary concern related to MRI  filtering is to  remove Rician

noise without disturbing the edge and texture information. To filter

the noise, we focused on solving global anisotropic diffusion func-

tion with gradient descent. Our proposed adaptive diffusion-based

MRI  filter (ADMF3D) is expressed as:

It+1 = It +
�

n

∑

d�n

� (IVd, �) (4)

where It denotes the input image, � is the constant which deter-

mines the rate of diffusion, n denotes the number of neighborhood

pixels, t is the distinct time step, � denotes the our proposed

influence function (described in  Section 3.2) and � is  a scaling

parameter. An automatic tuning of smoothing process makes it

adaptive in nature.

IVd in Eq. (4) is  the result of element wise multiplication

between local Rician variance Var(P) (computational description

Fig. 2.  Anisotropic diffusion influence (i.e. g stopping) function plot, based on  Loren-

zian  error norm.

provided in Section 3.3) and the difference between central (Id)

and its neighboring pixels (Id − It)  expressed as:

IVd =
∑

d�n

Var(P) ⊙ (Id − It) (5)

The difference computing module (gradient) in Eq. (5) gener-

ates value of very low magnitude, even zero mean in  homogeneous

regions (by normal distribution even at regions with noise and no

edges) but would generate spikes at intensity discontinuities (het-

erogeneous regions) [44].  This helps to find out the boundaries

of lobes in the images. This also helps in  diffusing the normally

distributed noise. However, in  presence of Rician noise, influence

function should include the information of the properties of  the

noise. To achieve this, we perform an element-wise multiplica-

tion with Var(P) and (Id − It). The behavioral change of  influence

function � as a result of element-wise multiplication will be com-

prehensible after its character analysis.

3.2. Proposed influence function

While denoising there is a need to  stop over-smoothing of the

averaging process, which blurs the denoised image. The graph

shown in  Fig. 2 does not  converge at either ends, and can lead

to over-smoothing if executed over multiple iterations. Thereby,

as a solution to this problem we introduce a  statistical edge stop-

ping function (influenced by Tukey’s concept) to well converge/stop
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Fig. 3. Proposed edge stopping function with stationary points A and B.

the smoothening process at both ends as shown in  Fig. 3 [45].  The

nature of the influence function � is  as shown in  Eq. (6):

�(x, �) =

{

x
[

1  − (x/�)
2
]2

x  ≤ �,

0, otherwise
(6)

where x = IVd as given in  Eq. (5).

Further analysis of the biweight � function would make things

more transparent. In  Eq. (4) this biweight function is used as an

edge stopping function.

The main reason to choose this function, is  due to its rapid con-

vergence by putting a stop to  the averaging process.

If we see the conventional anisotropic diffusion’s influence func-

tion (i.e. g stopping),

g(x) = x.e−(x2/k2) (7)

where k is a small constant. This is  also proportional to the Loren-

zian error norm. The first order derivative of Eq.  (7) has been plotted

in Fig. 2.

Again the plot of the first order derivative of the biweight func-

tion expressed in Eq. (6) has been shown in  Fig. 3.

On comparing the nature of the graphs generated from Eqs. (6)

and (7) (i.e. the first order derivative plots shown in  Fig. 4), it is

observed that the proposed edge stopping function put a  stop to

averaging process more rapidly. This helps in preserving more accu-

rately the fine textures in the images. For knowing the effectiveness

of this function, we examine it on  some normal (peppers) images

as shown in Fig. 5, where background has been added as a black

patch together with a  uniform Rician noise with (�R =  9%).

From the previous expressions, it is  well observed that the influ-

ence function � also depends on the scaling parameter � of an

image, and can be defined by means of statistical scale measures as

expressed below [46]:

�s = p × MAD(∇I)

= p × median(||∇I − median(||∇I||)||)
(8)

where p is the scale factor, for normal distribution it is  well known

that p ≈ 1.4826 where MAD  denotes the median absolute deviation

and the constant is  derived from the fact that the MAD of a  zero-

mean normal distribution (Gaussian) with unit variance is 0.67449.

Fig. 4.  Comparison plot between g stopping function and proposed edge stopping

function.

The value of scaling parameter �,  for the proposed biweight func-

tion norm is, �s = �
√

5 [33] which is obtained from the stationary

points (curvature starts decreasing or increasing gradually) of the

influence function shown in  Fig. 3 (points A, B).

3.3. Local variance based estimator

In  general almost all noise estimation techniques are based on

noise variance present in an image. Global noise estimation tech-

niques did not prove to  be an efficient parameter for denoising.

In this section, we propose a  local variance based noise esti-

mation methodology. The raw moment of rice  distribution can be

expressed with confluent hyper-geometric equation given by [47]:

E[P] =
(

2�2
R

)�/2
Ŵ

(

�

2
+ 1

)

1
F1

[

−
�

2
; 1; −

m2

2�2
R

]

(9)

where � is the order of moment, Ŵ  denotes gamma function, and

1F1 is the confluent hyper-geometric function of the first kind. m
and �R has already been mentioned in the theoretical background

section. The first moment E[P1], and the second moment E[P2] of

rice probability distribution are  expressed in  Eqs. (10) and (11)

respectively as [48,49]:

E[P1]=�R

√

�

2
e−m2/4�2

R

[(

1 +
m2

2�2

)

I0

(

m2

4�2
R

)

+
m2

2�2
R

I1

(

m2

4�2
R

)]

(10)

and

E[P2] = m2 + 2�2
R (11)

where I0 is the zeroth order modified Bessel function of  the first

kind, I1 is the first order modified Bessel function of first kind and

m is the magnitude. To estimate the noise, we  focused on the second

central moment, the Rician variance, given by [43,50]:

Var(P) = E [P2] − E[P1]2

= m2 + 2�2
R −

��2
R

2
e−m2/2�2

R

[(

1 +
m2

2�2
R

)

I0

(

m2

4�2

)

+
m2

2�2
R

I1

(

m2

4�2
R

)]2

(12)
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Fig. 5. Comparison between proposed edge stopping function and g stopping function on normal image, (left) Rician noisy (�R =  9%) image with added background, (middle)

applied proposed biweight function and (right) applied g stopping function.

The raw moment, the Rician variance Var(P), can be expressed in

more simple way using Laguerre polynomial [41,47],  which equates

to:

Var(P) = m2 + 2�2
R −

��2
R

2
L1/2

(

−m2

2�2
R

)

(13)

where L1/2(q) denotes a  Laguerre polynomial of order 1/2 and L1/2

is given by:

L1/2(q) = eq/2
[

(1 −  q) I0

(−q

2

)

− qI1

(−q

2

)]

(14)

where q = ( −m2

2�2
R

).

Low resolution kernel assists well to  accurately estimate the

local noise at the cost of a delta increase in computational burden, in

contrast to large size kernels. Hence, we have taken (3 × 3 × 3) ker-

nel resolution for Rician noise estimation while scanning through

the image. The complete steps of our proposed methodology has

been summarized as shown in Algorithm 1 1 in Section 3.3.

Algorithm 1. Adaptive diffusion-based MRI  filter

Input: Noisy MRI  volume data It .

Output: Denoised MRI volume data IF .

– – – – –  Local variance based estimator – – –  – –

1: Estimate the local Rician noise of MRI  volume data It based on

second order moment (variance) Var(P).

2: for  the entire volume It do

3: Compute the local Rician variance with kernel size (3 × 3 ×  3).

4:  Var(P) = m2 +  2�2
R

−
��2

R
2

L1/2

(

−m2

2�2
R

)

according to (12)

5: end for

–  – – – – Adaptive Diffusion-based 3D MRI  Filter – – – – –

6:  for  t = 1 to n no  of iteration do

7: Compute (Id − It), difference between central and its

neighboring pixels (26 neighbors).

8: IVd =
∑

d�n
Var(P) ⊙  (Id − It) according to (5)

9: It+1 = It + �
n

∑

d�n
�(IVd, �) according to  (4)

10: end for

11: Restore MRI via averaging all the volumetric data, by:

IF = Median(Itn).

12: return IF

4. Experimental results

This section contains the results performed on synthetic (3D),

and real MRI  data. We  have conducted our  experiments using

MATLABTM R2018b 64-bit software on Intel processor Core i7-880

@3.20GHz with Linux Ubuntu 16.04 operating system.

Fig. 6. Synthetic MRI data from BrainWeb blended with Rician noise in different

noise  level, top  left: ground truth; top  right: Rician noise – 5%; bottom left: Rician

noise – 9% and bottom right: Rician noise – 15%.

4.1. Experiments on simulated/synthetic dataset

To verify our proposed methodology we have conducted exper-

iments on synthetic MRI  images obtained from BrainWeb, URL:

http://www.bic.mni.mcgill.ca/brainweb [51].  Denoising perfor-

mance has been evaluated by inserting Rician noise with different

values of standard deviation ranging from �R = 3%–17% (2% incre-

ment at every step). Three different types of weighted images

namely T1-weighted, T2-weighted and PD-weighted normal brain

MRI with (181 × 217 ×  181) dimension is used for experimenta-

tion. Fig. 6 shows the synthetic MRI  ground truth data blended with

different noise levels from 5% to  15%.

http://www.bic.mni.mcgill.ca/brainweb
http://www.bic.mni.mcgill.ca/brainweb
http://www.bic.mni.mcgill.ca/brainweb
http://www.bic.mni.mcgill.ca/brainweb
http://www.bic.mni.mcgill.ca/brainweb
http://www.bic.mni.mcgill.ca/brainweb
http://www.bic.mni.mcgill.ca/brainweb
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4.2. Evaluation based on the following performance metrics on

simulated data

We  evaluated our results with the reference dataset from brain-

web, T1 T2 and PD-weighted normal brain MRI  data (181 × 217 ×
181) based on RMSE, PSNR and SSIM evaluation metrics. The Root

Mean Square Error (RMSE) [52] metric is  the most conventional

way for pixel-to-pixel error measurement, given by,

RMSE =

√

√

√

√

1

n

n
∑

i=1

(ŷi − yi)
2

(15)

where ŷi is the input image and yi is output image and n is  the

sample value for the MSE  estimate. The image dimension is (181 ×
217 × 181) for n.

Secondly, peak signal to noise ratio (PSNR) is  the metric used

to compare image compression quality expressed as, PSNR =

10log10

(

M2

MSE

)

where M the maximum possible pixel value of the

image and MSE  is the means square error.

Based on the structural information of the image, another sig-

nificant evaluation metric called Structural Similarity (SSIM) has

been introduced by  Wang et al. [53]. In  this approach the structural

similarity between the two  input images namely the ground truth

x and the denoised image y  is computed and is expressed as:

SSIM(x, y) =
(2�x�y + C1)(2�xy + C2)

(�2
x + �2

y + C1)(�2
x + �2

y + C2)
(16)

where C1 and C2 are constants, � standard deviation and � is mean

intensity.

4.3. Performance evaluation on simulated dataset

We  have compared our proposed adaptive diffusion-based MRI

filter (ADMF) methodology, with the following benchmark method-

ologies as shown in Table 1 and have compared based on the

evaluation metrics described in Section 4.2.  All  the quantitative

and qualitative analysis have been shown in Tables 1, 2, 3,  and

in Figs. 7–11 respectively. Tables 1,  2,  3 shows the quantitative

comparative analysis with respective to some benchmark method-

ologies in presence of Rician noise standard deviation ranging from

3% to  17%. Our proposed methodology outperformed all other

methodologies in  most of the cases. Our methodology has been

compared with the following state-of-the-art works as itemized

below.

Table 1

Comparison of the performance of denoising techniques based on the quantitative metrics in different levels of Rician noise for the T1-weighted synthetic MRI  volume. The

bold  values indicate the best results in comparison with the other studies.

�R 3% 5% 7% 9% 11% 13% 15% 17%

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

Noisy 0.81 30.49 0.66 26.02 0.52 23.09 0.44 21.04 0.36 19.19 0.31 17.71 0.25 16.45 0.23 15.39

BM4D  [25] 0.98 38.34 0.96 36.28 0.94 34.59 0.92 33.34 0.90 32.38 0.88 31.54 0.86 30.83 0.84 30.08

LTA3D  [16] 0.98 38.52 0.96 36.78 0.95 35.10 0.93 33.71 0.92 32.63 0.90 32.16 0.88 31.38 0.85 30.67

RNOLMMSE [22] 0.95 38.64 0.94 36.72 0.93 34.16 0.92 33.17 0.90 32.44 0.88 31.27 0.87 30.43 0.85 29.93

MNL-tSVD [29] 0.98 38.27 0.96 36.37 0.94 35.28 0.92 33.66 0.90 32.74 0.89 32.34 0.88 31.67 0.86 30.58

PRINLM3D [13] 0.98 38.19 0.96 35.34 0.94 33.37 0.92 32.14 0.89 30.88 0.87 30.15 0.85 29.72 0.83 29.26

ROLMMSE [20] 0.97 38.13 0.96 35.87 0.93 33.74 0.90 32.53 0.88 31.54 0.86 30.43 0.85 30.06 0.83 29.53

ADMF3D 0.98 38.08 0.96 36.12 0.95 34.78 0.94 33.74 0.92 32.86 0.91 32.28 0.89 31.44 0.87 30.86

Table 2

Comparison of the performance of denoising based on the quantitative metrics in different levels of Rician noise for the T2-weighted synthetic MRI  volume. The  bold values

indicate the best results in comparison with the other studies.

�R 3% 5% 7% 9% 11% 13% 15% 17%

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

Noisy 0.86 29.57 0.76 25.35 0.65 22.86 0.58 21.42 0.52 19.64 0.48 17.18 0.43 16.47 0.38 15.27

BM4D  [25] 0.97 37.67 0.95 35.16 0.93 32.24 0.90 30.88 0.88 29.94 0.86 28.42 0.84 27.15 0.82 26.23

LTA3D  [16] 0.98 37.69 0.96 35.27 0.94 32.41 0.92 31.07 0.91 30.22 0.90 28.64 0.88 27.38 0.85 26.52

RNOLMMSE [22] 0.95 37.92 0.94 34.26 0.93 32.52 0.91 31.14 0.89 29.75 0.87 28.42 0.85 27.35 0.84 26.25

MNL-tSVD [29] 0.98 37.25 0.96 35.67 0.95 32.76 0.93 31.57 0.91 30.16 0.90 28.76 0.88 27.53 0.86 26.67

PRINLM3D [13] 0.98 36.72 0.96 34.14 0.94 32.34 0.92 30.84 0.90 29.63 0.88 27.55 0.85 26.07 0.83 25.18

ROLMMSE [20] 0.97 36.86 0.95 34.06 0.93 31.85 0.92 30.57 0.90 29.25 0.88 27.76 0.87 26.82 0.84 25.46

ADMF3D 0.98 37.87 0.96 35.44 0.94 32.90 0.93 31.46 0.92 30.28 0.91 28.64 0.89 27.78 0.87 26.54

Table 3

Comparison of denoising techniques based on  the quantitative metrics in different levels of Rician noise for the PD-weighted synthetic MRI image. The bold values indicate

the  best results in comparison with the other studies.

�R 3% 5% 7% 9% 11% 13% 15% 17%

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

Noisy 0.79 30.86 0.64 27.16 0.52 23.46 0.42 21.28 0.37 19.24 0.32 17.56 028 16.08 0.25 14.88

BM4D  [25] 0.97 38.18 0.94 35.67 0.92 34.06 0.89 32.24 0.86 31.22 0.83 29.85 0.81 29.14 0.78 28.25

LTA3D  [16] 0.98 38.44 0.96 36.12 0.94 34.32 0.93 32.58 0.91 31.86 0.89 30.24 0.88 29.37 0.87 28.56

RNOLMMSE [22] 0.94 37.55 0.92 35.36 0.88 32.44 0.85 31.54 0.84 30.68 0.82 29.76 0.81 28.95 0.80 28.17

MNL-tSVD [29] 0.97 38.76 0.96 36.22 0.94 34.57 0.93 32.47 0.91 31.64 0.89 30.87 0.88 29.62 0.86 28.86

PRINLM3D [13] 0.97 37.24 0.95 35.17 0.92 32.74 0.89 31.87 0.87 30.73 0.85 29.08 0.82 28.18 0.79 27.07

ROLMMSE [20] 0.96 38.27 0.94 36.27 0.92 33.08 0.90 32.13 0.88 31.07 0.86 29.22 0.84 28.07 0.82 27.36

ADMF3D 0.97 38.56 0.96 36.27 0.94 34.36 0.93 32.65 0.92 31.75 0.90 30.78 0.89 29.73 0.87 28.92



P.  Das, C. Pal, A. Chakrabarti et al. / Biomedical Signal Processing and Control 59 (2020) 101901 7

Fig. 7. Example filtering results for an axial slice of the T1-w BrainWeb phantom (Rician noise level of 9%). (a)  Original image, (b) noisy image, (c)–(i) refers to the methodologies

starting  from BM4D to ADMF3D as shown in Table 1. The third row shows the  absolute value of the image residuals for the different methods.

Fig. 8. Example filtering results for an axial slice of the T2-w BrainWeb phantom (Rician noise level of 9%). (a)  Original image, (b) noisy image, (c)–(i) refers to the methodologies

starting  from BM4D to ADMF3D as shown in Table 1. The third row shows the  absolute value of the image residuals for the different methods.

• The nonlocal transfer-domain filter (BM4D) proposed by Mag-

gioni et al. [25].
• The Low-rank tensor approximation for 3D MRI  filter (LTA3D)

was proposed by  Fu and Dong [16].
• MRI  denoising based on modified LMMSE  estimator for 3D MRI

(RNOLMMSE) proposed by Yaghoobi and Hasanzadeh [22].

• 4D Nonlocal transform-domain filter for 3D MRI  (MNL-tSVD) was

proposed by Kong et al. [29].
• Sparseness and self-similarity based NLM filter for 3D MRI

(PRINLM3D) was proposed by Manjón et al. [13].
• Optimized LMMSE  based denoising for 3D MRI  (ROLMMSE) was

proposed by Golshan and Hasanzadeh [20].
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Fig. 9. Example filtering results for an axial slice of the PD-w BrainWeb phantom (Rician noise level of 9%). (a)  Original image, (b) noisy image, (c)–(i) refers to  the  methodologies

starting from BM4D to ADMF3D as shown in Table 1.  The third row shows the absolute value of the image residuals for the different methods.

Fig. 10. Example filtering results for region of interest cut (zoom view) of T1-w, T2-w and PD-w BrainWeb phantom (Rician noise level of 9%).

The results for denoising with different values of �R (ranging

from 3% to 17%) for T1/T2/PD-weighted (181 × 217 ×  181) nor-

mal  brain images are shown in Tables 1, 2, 3. The results from

Tables 1, 2, 3 has been plotted and shown in  Fig. 12,  and the analy-

sis is as follows. Observation shows that  LTA3D [16] and MNL-tSVD

[29] outperforms us narrowly in few scenarios mostly in  low noise

range.

MNL-tSVD [29] produces very comparable performance with

our’s in respect to  signal to noise ratio and even exceeds in  the

noise range of 12–15 standard deviation in T1-w weighted images

(Fig. 12) but lags in SSIM metric in all the cases.

LTA3D [16] shows moderate structural similarity in mid-range

noise ranges and also similar with us in certain points in the noise

range of 7,  9, 11 and 17 in  T1-w, T2-w and PD-w modality of images.

Also it shows almost comparable performance with respect to sig-

nal to noise ratio in  almost all noise ranges in T1 and T2-w. However,

its performance of signal to noise ratio is poor in case of PD-w

modality of images (via Fig. 12)  in the significant noise range of

11–17.

RNOLMMSE [22] lags in  SSIM and signal to noise ratio every

cases of T1, T2  and PD-weighted images and for the complete range

of noise standard deviation.

PRINLM3D [13] and ROLMMSE [20] are closely matching with

each other in T2  and PD-w, however, they lag far behind with our

proposed methodology for all the modalities and for the complete

range of standard deviations of noise.

Our’s produces better results even in places of degradation

of contrast information due to  incremental noise as shown in

Figs. 9 and 10.  The contrast information among different tissues

is also visually much better preserved on  the filtered images as

shown in  from Figs. 7, 8,  9.

The third rows for Figs. 7, 8, 9  shows the residual

images as obtained by subtracting the original image with the

denoised/filtered one with �R = 9%.

Hardly any notable structural feature is  found in  the residual

images in our proposed methodology. The lower amount of residue

characterizes our  ADMF3D solution is evident.
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Fig. 11. Example filtering results volumetric view of T1-w BrainWeb phantom (Rician noise level of 9%).

Additionally, from the residual images of our proposed method-

ology, reveals that no meaningful anatomical information has been

lost in the filtering process. The goodness of the denoised image is

measured based on the zero intensity (black) values in  the differ-

ence image. Higher zero intensity values signifies the closeness of

the denoised image with that of the original image, which signifies

the quality of the denoising methodology. Thus it is  evident that

our methodology performs better in accordance with the residual

images in comparison to the other methodologies for Rician per-

turbed images. From the magnified view of the T1-w, T2-w and

PD-w images as shown in  (Fig. 10) as well as by the visual expe-

rience (with naked eye) it is  well understood that  the structural

information and the fine textures are well preserved w.r.t. the com-

paring ones. We have evaluated their similarity by comparing the

textures, using the distance metric like  SSIM.

We further used the volumetric test data T1 BrainWeb phan-

tom of size (60 × 80 ×  60) voxels having 1.2 mm slice thickness,

without noise, and without intensity non-uniformity as shown in

Fig. 11. Added synthetically generated Rician noise with standard

deviation of 9% to  it,  and performed the denoising operations. Com-

pared against all the benchmark methodologies. The quantitative

and qualitative experimental results shows that our ADMF3D rep-

resents the state of the art in  MR  image denoising. Our proposed

methodology has been evaluated with the three evaluation metrics

namely SSIM, PSNR and RMSE. The behavior of these metrics for the

3 weighted images (namely T1-w, T2-w and PD-w) have been plot-

ted against the Rician noise standard deviation ranging from 3% to

17% as shown in Fig. 12. It  is  to be noted that the plot for each eval-

uation metrics follows almost the same pattern of movement along

the noise axis for all the three weighted images respectively, man-

ifesting the behavioral consistency throughout for each weights.

To evaluate the robustness of our proposed methodology we

examine with another benchmark numerical MR simulator known

as MRiLab [54],  a new comprehensive simulator for large-scale

realistic MRI  simulations. MRiLab combines realistic tissue mod-

eling with numerical virtualization of an MRI system and scanning

experiment. This enables the assessment of a  broad range of  MRI

approaches including advanced quantitative MRI  methods infer-
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Fig. 12. SSIM and PSNR comparisons of ADMF3D with other denoising methodologies for the T1-w, T2-w and PD-w images under Rician noise levels varying from 3% to  17%.

(a,b,c)  shows the variance of SSIM with various noise level for T1-w, T2-w and PD-w images respectively. (d,e,f) shows the variance of PSNR with various noise level for T1-w,

T2-w  and PD-w images respectively.

Fig. 13. Example showing the filtering results of MRiLab [54]  simulated data for four different configuration. (a) Axial view, (b) sagittal view, (c) coronal view, (d)  with

8-channel  head SAR coil axial view and (e)–(f) are the corresponding denoising results.

ring microstructure on a  subvoxel level. The MRiLab software

is available at http://mrilab.sourceforge.net/ for free open source

access. In this study we have taken four different configuration of

data (every volume size = 216 × 180 × 180 voxels, flip angle =  90◦

noise level 10% slice thickness=0.006 and multi-element coils (8-

channel head)). The filtering results for the four different MR

simulated data are reported in Fig. 13.  Visually it is  observed

that proposed ADMF3D performs well for multi-element coils MRI

images, by preserving the fine edge information whilst maintaining

the overall denoising quality.

http://mrilab.sourceforge.net/
http://mrilab.sourceforge.net/
http://mrilab.sourceforge.net/
http://mrilab.sourceforge.net/
http://mrilab.sourceforge.net/
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Fig. 14. Example results of the proposed ADMF3D filter on two  sets of real brain data from OASIS [55].  From top  to bottom: the first row shows the original observation,

second  row shows the denoised images and the corresponding residuals are shown in the third row respectively. (a) for TEST-I dataset and (b)  for TEST-II dataset.

Fig. 15. Top, region of interest area cut for TEST-I dataset and bottom, region of interest cut for TEST-II dataset.

4.4. Experimentation on real MRI  data

In this study, we have experimented with two real MRI

datasets (namely OAS30573 MR  d0515 and OAS30766 MR 0147)

from Open Access Series of Imaging Studies (OASIS) URL: http://www.

oasis-brains.org [55].  The T1-weighted 3D MR  volume (size =  256 ×
240 × 176 voxels, flip angle = 9◦, slice thickness =  1.2 mm,  with

repetition time =  2.3 ms,  echo time = 0.00295 ms  and inversion

time = 0.9 ms)  for coronal, axial and sagittal (Test-I and Test-II)

has been obtained from Siemens Biograph-mMR MR-PET scanner,

3.0 T system respectively as shown in Fig. 14.  A  zoomed version

has been taken as shown in  a  square box in the top row, and

the denoised results has been shown in Fig. 15. We  have applied

several denoising filters namely BM4D, LTA3D, RNOLMMSE, MNL-

tSVD, PRINLM3D and ROLMMSE (shown in Fig. 15) on Test-I and

II  respectively being shown in  two corresponding rows. Few of

them affects the image information and blurs the effective details

of the image anatomical information, which plays a  pivotal role in

extracting the information for diagnosis. From a subjective point of

view, ADMF3D achieves excellent visual results, as seen from the

smoothness in flat areas. The details are preserved along the edges

including the structural details, with better contrast and less blur-

ring. Also an accurate restoration of the intensities in  the phantom

yields good-quality estimates.

4.5. Performance analysis

Comparative study regarding the execution time for various MRI

denoising techniques are illustrated in  Table 4. All  experiments are

carried out on a  Quad Core Intel i7-880(R) CPU 3.20 GHz  proces-

sor, 8 GB RAM in using MATLAB 2018b. From Table 4  it can be seen

that ADMF3D produces more computationally efficient results with

better visual effects in comparison to  the benchmark studies like

BM4D, LTA3D and MNL-tSVD, making it a suitable alternative for

real MRI  image denoising. Furthermore, our experimental obser-

vation states that  60% of computational cost of ADMF3D lies in the

http://www.oasis-brains.org
http://www.oasis-brains.org
http://www.oasis-brains.org
http://www.oasis-brains.org
http://www.oasis-brains.org
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Fig. 16. Example denoising results of ADMF3D on  T1w image corrupted with rician noise. (a) Synthetic T1w. (b) Filtered by  ADMF3D. (c) Noisy real T1w. (d)  Filtered by

ADMF3D.

Table 4

Execution time comparison of different methods on simulated and real MRI  data.

Methods Data Execution time (min)

BM4D Simulated 6.8

Real 6.3

LTA3D Simulated 8.5

Real 8.3

RNOLMMSE Simulated 0.72

Real 0.78

MNL-tSVD Simulated 7.4

Real 6.6

ROLMMSE Simulated 1.4

Real 1.3

PRINLM3D Simulated 1.2

Real 1.0

ADMF3D Simulated 3.4

Real 2.2

Rician noise variance estimation, and our parallel implementation

cuts down the overall computing time by half. Additionally, the

efficiency can be further improved by simultaneously performing

noise estimation and adaptive diffusion filtering.

Detailed results in the region of interest (foreground) are

presented in Fig. 16.  The figure shows the visual evaluation of mag-

nified regions of the preserves anatomical structure (cranial nerves)

after applying filter ADMF3D on synthetic and real T1w MRI  images

respectively. Our proposed filtering technique also preserve the

details of cranial nerves accurately, making it a  viable solution for

a radiologist/clinician.

5. Conclusion

In this study, we have presented a  novel filtering methodol-

ogy that removes Rician noise from MRI  by  estimating the local

noise variance, which drives the diffusion process of the filter.

The adaptation of statistical edge stopping function captivates the

preservation condition of anatomical structure of the MRI images.

We  evaluated our  proposed methodology with various types of T1-

w, T2-w and PD-w MRI  image data set and compared with the

state-of-the-art methodologies. We have outperformed every other

on the basis of structural similarity metric which proves that our

proposed filter preserves very minutely the anatomical structure

of images besides removing Rician noise. This ensures the essential

objectives of medical image denoising for proper diagnosis. The sig-

nal to noise ration metric is comparable and also outperforms in few

scenarios with the state-of-the-art approaches, denoting a proper

denoising phenomenon too.  The denoising methodology also per-

forms well for the real dataset evident from the visual quality

comparable to others. We  also examine with another benchmark

numerical MR simulator known as MRiLab, a new comprehensive

simulator for large-scale realistic MRI  simulations.

The well-known noise distributions in  magnetic resonance

imaging (MRI) data (Rayleigh, Rician, or non-central chi-

distribution) describe the probability density of real-valued (i.e.

floating-point) signal intensities. Our proposed methodology can

reduced Rayleigh, Rician noise but needs improvement while

removing noise generated from chi-distribution. Moreover, the

performance of our methodology is  average on MRI  image affected

with very low noise level. Our proposed implementation requires

a  computing time of 3.4 min  for simulated dataset. For real MRI

image the execution time is  2.2 min  for a  complete parallel imple-

mentation. We are in process of making our  design more robust

to handle larger size  datasets w.r.t. resolutions and depth of the

3D MRI  volume with reduced time of execution (by identifying the

critical paths in  the design flow) suitable for implementation in

General Purpose Graphics Processing Unit  (GPGPU).
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