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Abstract

Uniform cantilever microbeam has been at the helm of affair since the advent of micromechanical system

(MEMS) technology to develop sensitive MEMS based sensors and actuators. Since then, several improved

designs were incorporated to improve their sensitivity and bandwidth. In the work described in this paper,

we focus on improving the frequency bandwidth by utilizing a unique characteristics of non-uniform beams.

To do the study, we first fabricated single non-uniform diverging and converging beams and characterize

them to find their resonance frequency variation with respect to uniform beams under ambient and vacuum

conditions. Subsequently, we took two mechanical coupled beams with different combinations of uniform and

non-uniform beams. We measured their first in-phase and out-of-phase modes. We found that a combination

of diverging and converging beam can tune the difference between these frequencies from 278 Hz to 8.8 kHz

with respect to the frequency difference of 316 Hz for a combination of two uniform beams. A frequency

tuning of about 2685% signifies the importance of non-uniform beams. After showing the coupling effect of

arrays of mechanically coupled three, four and five uniform beams, we numerically demonstrated the tuning

for a specific combination of uniform beam, diverging beam and converging beam in five beams array. The

obtained results can be applied to increase the frequency band of various MEMS resonators based on the

combinations of uniform and non-uniform coupled beams.

Keywords: Non-Uniform beams, Resonance frequency, Coupled beams, Quality factor.

1. Introduction

Frequency tuning has been studied in controlling the operating bandwidth of microelectromechanical

system (MEMS) and nanoelectromechanical systems (NEMS) through various mechanisms [1, 2, 3, 4, 5, 6,

7, 8, 9]. In MEMS and NEMS devices, such effect can be brought in by utilizing different types of coupling

mechanisms such as linear and nonlinear mechanical coupling [10, 11, 12], electromechanical coupling [13,

14, 15], thermoelastic coupling [16], etc. However, these coupling mechanisms have been studied using either
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single or an array of uniform beams. The main objective of the paper is to bring out the influence of non-

uniform beams in tuning the bandwidth of coupled micromechanical structures in arrays. Although, the

focus of the paper is mainly to study the phenomena in the paper, such concepts can be used for designing

a wide band piezoelectric micromechanical energy harvesters [17], and other sensors and actuators.

Numerous research groups have proposed and demonstrated coupled MEMS resonator systems for dif-

ferent purposes such as sensing and filtering. Spletzer et al. [1] demonstrated the vibration localization as

an extremely sensitive method over the resonance frequency shift method in nearly identical coupled MEMS

resonators to detect the added mass of target analyte. Furthermore, Spletzer et al. [2] proposed mechani-

cally coupled array of 15 uniform microcantilevers for ultrasensitive mass detection and identification using

vibration localization technique. Zhao et al. [3] also reported a three degree-of- freedom (3DoF) MEMS res-

onant sensing device comprising of three weakly coupled resonators for enhanced sensitivity compared to the

present state of the art resonant force sensor. Further, using a pair of rectangular clamped-clamped beams,

Wood et al. [4] demonstrated the mode-localization effect exhibited in electrostatically-coupled MEMS res-

onators for enhancement in sensitivity. Hajhashemi et al. [5] proposed a micromechanical filter design made

of two micro-resonators that are coupled electrostatically using middle electrode for independent tuning of

its centre frequency and bandwidth. Pourkamali and Ayazi [6, 7] presented coupling of micromechanical

resonators for execution of high-order narrow bandwidth MEMS bandpass filters using active and passive

coupling elements under the influence of electrostatic coupling. Thiruvenkatanathan et al. [8] proposed the

use of vibration mode localization phenomenon as a highly sensitive method of detecting small parametric

variations in the structural properties of electrically coupled micromechanical resonators. Further, Thiru-

venkatanathan et al. [9] reported the experimental evidence of the veering theory and mode localization in

micromechanical resonator arrays coupled by weak electrostatic coupling. Matheny et al. [10] studied the

influence of nonlinear modal coupling due to inter and intramodal nonlinearities of a fixed-fixed nanome-

chanical beam. Conley et al. [11] demonstrated the nonlinear coupling between planer and non-planer

modes in nanomechanical beam. Cadeddu et al. [12] investigated the influence of coupling of linear modes

of planer and out of plane modes by driving one of the mode harder using PZT. Our group has also studied

the coupling effect of linear in-plane and out-of-plane modes under the influence of electrostatic loading

applied along in-plane direction [13]. Buks and Roukes [14] have studied electrostatic coupling in an array

of micromechanical fixed beams. Kambali et al. [15] have performed experimental and theoretical studies

of in-plane and out-of-plane modes of micromechanical beams array. Recently, Wang et al. [18, 19] have

utilized mechanically coupled beams array near the fixed end to increase the performance of a sensor. A

careful examination of all the above studies reveal that coupling of different types can be brought into the

design spectrum of nano- and micro-mechanical sensors and actuators. We have also noticed that most of

the above studies employ fixed-fixed or cantilever beam with uniform section along its length under the

influence of electrostatic excitation. In such system, the frequency tuning is achieved through electrostatic

2



Page 3 of 15

A
cc

ep
te

d 
M

an
us

cr
ip

t

coupling by changing its dc bias which is mostly softening in nature. Moreover, the electrostatic coupling is

limited by pull-in voltage. However, non-uniform beams with converging width can increase the frequency

and those with diverging width reduce the frequency with respect to uniform beam [25, 26]. Moreover, when

coupled with electrostatic forcing, the pull-in voltage of converging beam increases drastically [25]. Hence,

it can provide extra region for frequency tuning. Most significant changes can be observed in an array of two

beams in which the in-phase and out-of-phase frequencies can be tuned through the combination of uniform

and non-uniform beams which is the subject matter of research in the current paper. The same advantage

can be obtained in array of n-beams with different combinations of uniform and non-uniform beams. To

include non-uniformity in the beam width, we select linear and nonlinear variation of width along beam

length. Linear variation can be obtained by varying beam width linearly along its length. Since, we get

closed form solution for non-uniform beam as described in references [25, 26] in case of quartic varying beam,

we use quartic varying beam rather than quadratic or cubic varying beam to include nonlinear variation in

width along the beam length.

As we know that two identically uniform beams coupled through overhang support can be modelled as

spring-mass system [18, 19]. If K and M are effective stiffness and effective mass of both identical beams

and Kc is the coupled spring constant provided by overhang coupling, then in-phase and out-of-phase

frequencies can be obtained using fin = 1
2π

√

K
M and fout = 1

2π

√

K+2Kc

M [18, 19]. Therefore, coupling of

these modes is controlled using Kc. Now, if two non-identical beams with different spring constants K1 and

K2 are coupled through overhang coupling of stiffness Kc, then the corresponding in-phase and out-of-phase

frequencies can be obtained using fin,out = 1
2π

√

Kc+
[

(K1+K2)±
√

(K1−K2)2+4K2
c

]

/2

M for same effective mass,

i.e., M1 ≈ M2 = M . If M1 and M2 are different then the corresponding frequencies can be modified as

fin,out =
1
2π

√

Kcβ+Kc+(K1+K2)±
√

β2K2
2+2 β2K2Kc−2 β K2K1−2 β K2Kc+Kc

2β2−2 β KcK1+2Kc

2β+K1
2+2KcK1+Kc

2

2M1

,

where, β = M1/M2. The expression of above frequencies show that fin and fout not only depend on

coupling stiffness but these can also be tunned by varying effective spring and/or mass constants of individual

beam elements. Such variation in spring and mass constants of two coupled beams can be induced by

taking a combination of beams with different types of non-uniformity. Motivated by the outcome of non-

uniform beams, we experimentally study the influence of non-uniform beam on frequency characteristics of

mechanically coupled beams. In this paper, we show how a combination of different types of beams can

tune these frequencies effectively.

2. Fabrication and Measurements

To perform this study, we first fabricated single uniform and non-uniform beams of converging and

diverging type with linear and quartic variation in width by following the process steps described in Figure

1(a). The non-uniform micromechanical beams with linear and quartic varying width (converging as well as

3
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diverging) corresponding to different α values (-0. 6 to 0.6) were generated based on b(x) = b0(1 + αx
l )

n,

where n = 1 for linearly varying beam and n = 4 for quartic varying beam, α is negative for converging beam

and positive for diverging beam. First for a given α value with fixed length and width of the beam, b(x)

values corresponding to different x values at the interval of 5 were determined using aforementioned formulas.

Then, using b(x) values corresponding to different x values, beams with linear and quartic varying widths

for different α values were generated in the Clewin4 layout software. After that using e-beam lithography

the micromechanical beams designed in Clewin4 layout software were transferred onto a glass plate. The

pattern on the glass plate (Mask) is transferred onto the wafer surface by lithography followed by wet

bulk micromachining in 25 wt% TMAH at 75oC to finally fabricate over hanging SiO2 structures [27]. All

the beams are of silicon dioxide material. Figure 1(b) shows images of uniform beam, linearly converging

and diverging beams, and quartic converging beam. Figure 1(c) also shows a typical mechanically coupled

converging and diverging beams. The length, thickness and width at the fixed end of single non-uniform

beams are taken as 200 µm and 0.95− 0.96 µm, and 40 µm, respectively. Each beam is separated from the

bottom substrate by a depth of about 90 − 103 µm. Similarly, the dimensions of coupled beams are same

as that of single beams, but they are coupled through an overhang with a width of 16 µm at fixed end and

a length of 25 µm along beam length. To obtain the experimental results of single non-uniform beams, we

fabricated the linearly varying beams with tapering ratio, α, of -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.1, 0.2, 0.3,

0.4, 0.5 and 0.6. For the quartic varying beams, we fabricated beams with tapering ratio, α, of -0.6, -0.4,

-0.2, 0.2, 0.4, and 0.6. The length of all beams is 200 µm except quartic converging beam with α = −0.6

for which the length is measured as 167 µm.

To measure the resonance frequencies and quality factors of cantilever beams with different taperings, we

performed experiments using laser scanning vibrometer. Figure 1(d) shows the outline of experimental setup

which consists of laser source, optical detectors, internal function generator, analyzer, and piezoactuators.

The fabricated structure (i.e., cantilever) is mounted on peizoactuator which is excited with pseudorandom

excitation signal. Subsequently, frequency response of oscillating structure is measured from reflected laser

light on the detector. Signal from the detector is measured using analyzer which gives frequency response

curve as shown in Figure 1(e). Resonance frequency, fn, is measured by finding the peak frequency of

response curve. The damping ratio, ξ, or quality factor, Q, can be found either by half-width method or by

fitting the dynamic amplification factor due to base excitation. Expression of dynamic amplification as the

ratio of displacement amplitude, X, and excitation amplitude, Z, can be written in terms of frequency ratio

r = f/fn and quality factor Q as [29]
∣

∣

∣

∣

X

Z

∣

∣

∣

∣

=
r2

√

(1− r2)2 + (r/Q)2
. (1)

Figure 1(e) shows the fitting of dynamic amplification factor from Eqn.(1) with experimental results. Fig-

ure 1(f) shows mode shapes of converging and diverging beams corresponding to first four modes. In this
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Figure 1: (a) Step by step fabrication process for fabricating uniform and non-uniform beams; Images of (b) uniform beam,

linearly converging beam, linearly diverging beam, quartic converging beam and (c) a coupled two beams array. (d) A schematic

representation of experimental procedure to characterize the beams using laser vibrometer to get (e) frequency response curve.

(f) Four transverse modes of a converging and diverging beams measured using laser vibrometer.

paper, we restrict our analysis to first mode of single converging and diverging beams. After experimentally

characterizing non-uniform beams of different types, we measured the variation of frequency and quality

factor with non-uniform parameter under ambient and vacuum conditions. Subsequently, we characterized

mechanically coupled two beams array consisting of different combinations of non-uniform and uniform

beams to study their influence on the coupling of first in-phase mode and out-of-phase mode frequencies. It

was found that frequency difference between in-phase and out-of-phase can be reduced by using combination

of only converging beams, and can be increased by using combinations of a converging beam and a diverging

or uniform beam. Similar effect can also be seen in an array of three, four and five beams consisting of

uniform and nonuniform beams.

3. Results and Discussions

To extract the material properties of silicon dioxide beam, we compared the theoretically computed

frequency of uniform and non-uniform beams corresponding to their first mode. If the beam is having a

length L, width b, thickness t, elastic modulus, E and the density, ρ, we use standard formula of frequency

5
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expression of cantilever beam as [29]

fn =
Kn

2πL2

√

EI0
ρA0

(2)

where, I0 = b0t
3/12 is the area moment of inertia and A0 = b0t is cross-sectional area and b0 is width at the

fixed end. Kn is the frequency parameter which is different for uniform, linearly tapered and quartic tapered

beams. For uniform cantilever beam, Kn =3.516, 22.0345, 61.6972, and 120.90 for first, second, third and

fourth modes, respectively. Since, the density of silicon oxide, ρ, is 2200 kg/m3 and its elastic modulus

is found in the range of 43 − 77 GPa [28], we computed the elastic modulus from experimental results of

for each sets of uniform and non-uniform beams. To describe influence of individual non-uniform beams

and coupled system of uniform and non-uniform beams, we fabricated different structures in different dies.

In first die, we fabricated uniform beam and single non-uniform beams. In other die, we fabricated single

uniform beam and arrays of non-uniform beams. For a uniform cantilever beam of length L = 200 µm, width

b = b0 = 20 µm and t = 0.95 µm, first four measured frequencies in die 1 are found as 20.56 kHz, 129.48

kHz, 362.38 kHz, and 710.31 kHz, respectively. On comparing theoretical frequency with experimental

values for the first mode of beam in die 1, we found the elastic modulus of SiO2 as E = 63.2 GPa. Using

E = 63.2 GPa, we get theoretical frequencies for second, third, and fourth modes as 128.87 kHz, 360.83

kHz, and 707.08 kHz, respectively, with the percentage error of less than 0.5%. Hence, we use E = 63.2

GPa for finding frequencies of single non-uniform beams with different tapering ratios. Similarly, elastic

modulus of second die is found as E = 66.26 GPa. Therefore, we use E = 66.26 GPa in analyzing the

response of systems of coupled beams. To quantify the order of coupling effect of two coupled beams, we

take E = 66.26 GPa, ρ = 2200kg/m3, beam length L = 200µm from the fixed support and beam thickness

t = 0.966 µm of two coupled uniform beams fabricated in die 2. Taking the measured values of in-phase and

out-of-phase frequencies as 23.93 kHz and 24.19 kHz of two coupled uniform beams and using theoretical

model of in-phase and out-of-phase frequencies as fin = 1
2π

√

K
M and fout = 1

2π

√

K+2Kc

M [18, 19], we find

Kc ≈ 1.01× 10−3 N/m and K ≈ 90.58× 10−3 N/m for Meff = 33M/140 ≈ 4× 10−12 kg.

3.1. Single Nonuniform Beams

In this section, we compared the measured first mode frequency values of non-uniform beams with

theoretical values to confirm the effects of tapering on frequency tuning. Subsequently, we discuss its effect

on damping under ambient and vacuum condition. Taking ρ = 2200 kg/m3, and E = 63.2 GPa, we compute

the frequencies of non-uniform beams using Eqn. (2). Kn for linearly converging beam with α = −0.1,

−0.2, −0.3, −0.4, −0.5, −0.6 are taken as 3.642, 3.771, 3.922, 4.098, 4.312, and 4.578 [25, 26]. For linearly

diverging beam of tapering ratio 0.2, 0.4, 0.6, Kn values are given by 3.32, 3.16, and 3.03, respectively.

For quartic converging and diverging beam of tapering parameters α = −0.6, −0.4, −0.2, 0.2, 0.4, 0.6, Kc

values are taken as 9.23, 6.30, 4.59, 2.8, 2.3, and 1.93. For more details on how to computing the values of

6
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Figure 2: (a) Variation of measured first mode frequencies with different tapering ratios (-0.6 to 0.6) of linearly and quartic

varying beams under ambient condition (1.01325 bar) and vacuum condition (8× 10−3 mbar). Variation of quality factor, Q,

corresponding to first mode with different tapering ratios (-0.6 to 0.6) of linearly and quartic varying beams under (b) vacuum

condition (8× 10−3 mbar) and (c) ambient condition (1.01325 bar).

Kc for different tapering ratios, readers are referred to paper by Sajal et al.[25, 26]. Figure 2(a) shows the

measured frequencies of non-uniform beams of different tapering parameters which follow the same trend

as the theoretical frequency reported by Sajal et al. [25, 26]. Based on the comparison, we found that

frequency can be increased significantly by quartic converging beams than linearly converging beam of same

tapering parameter. For diverging beams, the frequency reduces marginally in both cases. But in case of

quartic varying beams, the change in frequency is more as compared to linearly varying beams. Hence, a

combination of non-uniform and uniform beams can be analyzed to tune the frequencies of coupled beam

arrays.

To see the influence of tapering on damping in vacuum and ambient conditions, we measured quality

factor of single non-uniform beams. Figure 2(b) shows that the quality factor increases linearly as tapering

7



Page 8 of 15

A
cc

ep
te

d 
M

an
us

cr
ip

t

22.5 23 23.5 24 24.5 25
0

0.5

1.0

1.5

Frequency (kHz)

D
is

p
la

ce
m

en
t 

(n
m

)

40-4
40

-4

200 µm

25µm

16 µm

f f
2221

∆f

In-phase mode
Anti-phase mode

F
re

q
u
en

cy
 (

k
H

z)

20

25

30

35

0

2

4

6

8

10

∆
f 

(k
H

z)

1 2 3 4 5 6 7 8 9 10 1112 1 2 3 4 5 6 7 8 9 10 1112

Q
C

(0
.1

) 
- 

Q
C

(0
.1

)

L
C

(0
.2

) 
- 

L
C

(0
.2

)

L
C

(0
.1

) 
- 

L
C

(0
.1

)

U
 -

 L
C

(0
.1

)

L
D

(0
.1

) 
- 

L
C

(0
.1

)

U
- 

L
C

(0
.2

)

L
D

(0
.1

) 
- 

L
C

(0
.2

)

L
D

(0
.2

) 
- 

L
C

(0
.2

)

L
D

(0
.1

) 
- 

Q
C

 (
0

.1
)

L
D

(0
.2

) 
- 

Q
C

 (
0

.2
)

L
D

(0
.1

) 
- 

Q
C

 (
0

.2
)

U
 -

 U

Uniform, U (0.0)

Linear Converging, LC (0.1)

U-LC(0.1)(a)

(b) (c)

Uniform - Uniform

Q
C

(0
.1

) 
- 

Q
C

(0
.1

)

L
C

(0
.2

) 
- 

L
C

(0
.2

)

L
C

(0
.1

) 
- 

L
C

(0
.1

)

U
 -

 U

U
 -

 L
C

(0
.1

)

L
D

(0
.1

) 
- 

L
C

(0
.1

)

U
- 

L
C

(0
.2

)

L
D

(0
.1

) 
- 

L
C

(0
.2

)

L
D

(0
.2

) 
- 

L
C

(0
.2

)

L
D

(0
.1

) 
- 

Q
C

 (
0

.1
)

L
D

(0
.2

) 
- 

Q
C

 (
0

.2
)

L
D

(0
.1

) 
- 

Q
C

 (
0

.2
)

f
21

f
22 ∆fExp:

Num: f
21

f
22 ∆f

Exp: ∆f

0

1

2

3

4

D
is

p
. 

(n
m

)

a
21

a
22

0 5 10 15

a
21

a
22

Q
C

(0
.1

) 
- 

Q
C

(0
.1

)

L
C

(0
.2

) 
- 

L
C

(0
.2

)

L
C

(0
.1

) 
- 

L
C

(0
.1

)

U
 -

 U

U
 -

 L
C

(0
.1

)

L
D

(0
.1

) 
- 

L
C

(0
.1

)

U
- 

L
C

(0
.2

)
L

D
(0

.1
) 

- 
L

C
(0

.2
) L
D

(0
.2

) 
- 

L
C

(0
.2

)
L

D
(0

.1
) 

- 
Q

C
 (

0
.1

)

L
D

(0
.1

) 
- 

Q
C

 (
0

.2
)

L
D

(0
.2

) 
- 

Q
C

 (
0

.2
)

Sample No.

(d)

Fit

Figure 3: (a) Experimental frequency response of a coupled uniform and linearly converging beam with tapering parameter of

0.1 showing the in-phase, f21, and out-of-phase, f22, frequencies and modes. Variation of (b) f21 and f22, and (c) δf = f22−f21

for 12 different sets of two coupled beams. The shapes ‘×’ and ‘◦’ represent experimental values of in-phase and out-of-phase

frequencies. The corresponding numerical values are represented by ‘♦’ and ‘∗’. (d) Variation of measured value of displacement

amplitudes a21 and a12 marked as ’filled circle’ and ’x’ corresponding to in-phase, f21, and out-of-phase, f22 frequencies for 12

different sets of two coupled beams.

ratio decreases from 0.6 (diverging) to -0.6 (converging) under vacuum condition, i.e., 8 × 10−3mbar, in

linearly as well as quartic varying beams. It is also found that the quality factor increases from 600 to 1150

in case of linearly varying beam and 480 to 1350 in case of quartic varying beam under vacuum conditions.

On linear curve fit of measured data, we found that curves intersect at the condition of uniform beam,

i.e., α = 0. The source of damping under vacuum condition may be due to pressure independent sources

such as support loss, thermoelastic damping, etc. Figure 2(c) shows variation of quality factor (Q) with

tapering ratios of linearly and quartic varying cantilever beams under ambient condition. Curve fitting the

experimental results, we found that quality factor attains maximum value of about 35 corresponding to

α = −0.2 in case of quartic varying beam and about 40 at α = 0.4 in case of linearly varying beam. Such

variation leads to the crossing of two curves when beam becomes uniform. This kind of behavior may be

8
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due to relative interplay of squeeze-film damping and drag force damping similar to the case presented by

Verbridge et al. [20] and Vishwakarma et al. [21] for the uniform beam of different width. However, a further

theoretical analysis is needed to correctly understand the damping behavior of non-uniform beams under

ambient and vacuum conditions. Figure 2(c) shows measured first mode frequency of linear and quartic

varying beams under ambient and vacuum conditions. An overall analysis reveals that non-uniform beams

under ambient and vacuum conditions can be used to tune the frequency as well quality factors, effectively.

3.2. Coupled Systems of Uniform and Nonuniform Beams

To analyze the influence of non-uniform effect on frequency tuning of coupled beams, we first con-

sider two coupled beams with different combinations of uniform and/or non-uniform beams. Figure 3(a)

shows frequency response of a coupled uniform beam and linearly converging beam with tapering ratio of

0.1 under vacuum condition. Due to coupling at the overhang support, two beams oscillate in in-phase

mode at frequency corresponding to f21 = 23.07 kHz and out-of-phase mode at frequency of f22 = 24.07

kHz giving a difference of ∆f = 1 kHz. To observe the influence of non-uniformity, we fabricated dif-

ferent sets of coupled beams and measured their frequencies corresponding to in-phase mode (f21), out-

of-phase mode (f22) and the difference ∆f = f22 − f21. Considering ‘U’ as uniform beam, LC(α) and

LD(α) as linearly converging and diverging beams with tapering parameter α, and QC(α) and QD(α) as

quartic converging and diverging beams with tapering parameter α, 12 sets of two coupled beams can

be marked as QC(0.1)-QC(0.1), LC(0.2)-LC(0.2), LC(0.1)-LC(0.1), U-U, U-LC(0.1), LD(0.1)-LC(0.1), U-

LC(0.2), LD(0.1)-LC(0.2), LD(0.2)-LC(0.2), LD(0.1)-LC(0.1), LD(0.1)-QC(0.2), LD(0.2)-QC(0.2). In Fig-

ure 3(b), we show the distribution of f21 marked as ’x’ and f22 marked as ’o’for 12 sets of coupled beams with

different α. Figure 3(c) shows variation of frequency difference ∆f for the same 12 sets of coupled beams. On

analyzing the results, we found that a set of converging beams (QC(0.1)-QC(0.1)) bring the two frequencies

closer giving a difference of 278 Hz, while a set of converging and diverging beams (LD(0.2)-QC(0.2)) make

them apart by a difference of 8.8 kHz. It is also noted that coupled uniform beams (U-U) have frequencies at

f21 = 22.697 kHz and f22 = 23.013 kHz which give a difference of ∆f = f22− f21 = 316 Hz. Thus, for given

sets of coupled beams, a frequency reduction as low as 12% and a frequency increment as high as 2685%

are obtained by utilizing a combination of non-uniform beams. To further increase the frequency band of

coupled beams, number of elements in an array can be increased. Additionally, corresponding to in-phase

mode (f21) and out-of-phase mode (f22), response amplitudes a21 and a22 for 12 different sets of two coupled

beams are shown in Fig.3(d). It is found that the vibration amplitude, a21, corresponding to in-phase mode

(f21) shows maximum response in the case of LD(0.2)-LC(0.2) which consists of a linearly diverging beam

and a linearly converging beam both with a tapering ratio of 0.2. Thus, a combination of diverging and

converging beams helps in achieving an optimum amplitude other than giving a wide frequency difference

between in-phase and out-of-phase frequencies. However, a further analysis is required to understand the

9
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Figure 4: (a) Variation of measured frequencies fn1 to fnn and the corresponding frequency difference/bandwidth ∆fn =

fnn − fn1 for n-coupled uniform beams arrays, where n=1,2,3,4,5. The inset of the figure shows the variation of response

amplitudes, marked as ’filled circle’ and ’x’ corresponding to in-phase, f21, and out-of-phase, f22, frequencies, as the number

of beams in an array increases. (b) Variation of computed frequencies f51 to f55 and frequency difference ∆f = f55 − f51 for

5 coupled uniform beams (U-U-U-U-U) and two combinations of uniform and non-uniform beams such as LD(0.2)-U-LC(0.2)-

U-LD(0.2) and LD(0.4)-U-LC(0.4)-U-LD(0.4).

influence of tapering on vibrational amplitude of two coupled beams with different combination of uniform

and non-uniform beams.

To show the effect of varying number of elements in an array, we fabricated a single uniform beam and

coupled uniform beams of 2, 3, 4 and 5 elements. Figure 4(a) shows the variation of measured frequency

band consisting of frequencies of many modes as the number of elements in an array of coupled uniform

beams. It also shows the modes of coupled frequencies in an array. For Meff =≈ 4×10−12 kg, Kc and K are

1.01× 10−3 N/m and 90.58× 10−3 N/m for 2 uniform beams, 4.52× 10−3 N/m and 89.40× 10−3 N/m for

3 uniform beams, 3.65× 10−3 N/m and 92.10× 10−3 N/m for 4 uniform beams, and 5.06× 10−3 N/m and

90.40× 10−3 N/m for 5 uniform beams. The corresponding ratio of Kc/K as 0.011, 0.050, 0.0396, 0.056 for

2, 3, 4, and 5 coupled beams arrays, respectively. It shows that as the number of uniform beams increases

10



Page 11 of 15

A
cc

ep
te

d 
M

an
us

cr
ip

t

from 2 to 5, the frequency difference is also increased by around 788%. However, the response amplitudes

corresponding to different frequencies of n-beam array reduces exponentially as the number of beams, n,

increases as shown in the inset of Fig. 4(a). To improve the response amplitude of n-beam array, a suitable

combination of uniform and non-uniform beams can be explored. To show the effect of non-uniform beams in

tuning the frequency of five beams array, we performed numerical analysis. To validate the numerical model

with measured results, we first model two coupled beams consisting of uniform and non-uniform beams for

12 different sets and compare the results with measured values as shown in Fig. 3(b). The comparison of

results clearly shows that the numerical results in computing in-phase and out-of-phase frequencies follow the

similar trend as that of measured values for 12 different sets of uniform and non-uniform beams with average

percentage error of about 2.4% and maximum percentage error of about 7%. Moreover, on comparing the

numerical result with measured value for a coupled 5 uniform beams, the numerical result gives a frequency

difference of 2.31 kHz with a percentage error of around 6%. Considering such level of accuracy of numerical

method, we used it to analyze the influence of non-uniform beams on frequency tuning of 5 coupled beams

array in Fig. 4(b). Based on the numerical analysis, it is found that the difference of 2.31 kHz for a set

of 5 coupled uniform beams (U-U-U-U-U) increases to 4.35 (88%) and 7.28 (215%) for sets of uniform

and non-uniform beams, LD(0.2)-U-LC(0.2)-U-LD(0.2) and LD(0.4)-U-LC(0.4)-U-LD(0.4), respectively, as

shown in Fig. 4(b). Such variation can further be tuned by including non-uniform beams of higher tapering

ratio. Thus, using the experimental and numerical analysis, we have demonstrated an exciting application

of non-uniform beams in effectively tuning the frequencies of coupled beams array for MEMS resonators.

4. Conclusions

In short, we first analyzed the variation of first transverse mode frequency of a single non-uniform

beam with linearly and quartic varying widths based on experimental technique. After quantifying the

variation in which frequency reduces for diverging beams and increases for converging beams, we utilize

such characteristics in tuning the in-phase and out-of-phase modes of coupled two beams with uniform/non-

uniform widths. Based on the analysis, we found that a set of two converging beams bring these two

modes closer than that of two coupled uniform beams. Contrarily, a combination of uniform/converging

beam and diverging beam makes them apart. Following this method, we were able to reduce the difference

between two modes by 12% for a combination of quartic converging beams with tapering parameters of 0.1

(QC(0.1)-QC(0.1)) and increase the difference by 2685% for a combination of linearly diverging and quartic

converging beams with tapering parameters 0.2 (LD(0.2)-QC(0.2)). Moreover, we have also observed that

the frequency span over which these frequencies appear can further be increased significantly by selecting

an appropriate combinations of uniform and non-uniform beams in a five coupled beams array. Taken

together, the techniques presented in this paper can be utilized to increase bandwidth of most of the MEMS
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resonators.
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These are the main highlights of the paper, 

1) A systematic experiment is performed to find frequency and quality factor of non-uniform beam 

with linearly and quartic varying width. 

2) A systematic experimental studies is performed on two mechanically coupled beams with 

different combinations of uniform and non-uniform beams. 

3) Experimental and numerical studies are performed to see the influence of frequency tuning in a 

combination of five uniform/non-uniform beams. 

4) All the above studies indicate that the frequency band width can be effectively controlled using 

non-uniform beams.  
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