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ABSOLUTELY MINIMUM ATTAINING CLOSED OPERATORS

S. H. KULKARNI1 AND G. RAMESH 2∗

Abstract. We define and discuss properties of the class of unbounded op-
erators which attain minimum modulus. We establish a relationship between
this class and the class of norm attaining bounded operators and compare the
properties of both. Also we define absolutely minimum attaining operators
(possibly unbounded) and characterize injective absolutely minimum attaining
operators as those with compact generalized inverse. We give several con-
sequences, one of those is that every such operator has a non trivial hyper
invariant subspace.

1. Introduction

The class of norm attaining operators on Banach spaces is well studied by
several authors in the literature. It is known that the class of norm attaining
operators is dense in the space of all bounded linear operators on a Hilbert space
with respect to the operator norm [18, Theorem 1]. For more details on norm
attaining operators on Banach spaces, we refer to [19, 2] and [14] and references
therein.

Every compact operator is norm attaining. In fact, restricted to any non zero
closed subspace of a Hilbert space, it remains as compact and hence norm attain-
ing. Motivated by this observation, Carvajal and Neves [12] introduced a class
of operators, called the absolutely norm attaining operators. Characterization of
such operators on separable Hilbert space, in a particular case is given in [21] and
a complete characterization on arbitrary Hilbert space is discussed in [28]. Many
properties of these operators resemble the properties of compact operators.

It is a natural question to ask what happens if the norm is replaced by the
minimum modulus. This leads to the definition of minimum attaining operators.
Analogously, we can define absolutely minimum attaining operators. In a recent
paper Carvajal and Neves [13], studied bounded operators between two different
Hilbert spaces having such property. The structure of positive absolutely mini-
mum attaining operators is described in [16]. This concept is also applicable to
linear operators, that are not bounded.

In this article, we introduce the minimum attaining property for densely defined
closed operators (possibly not bounded). We prove several characterizations of
such operators. We also prove the dual relation between the norm attaining
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bounded operators and the minimum attaining closed operators. Finally, we
introduce the absolutely minimum attaining operators and prove a representation
theorem for the injective absolutely minimum attaining operators. Furthermore,
we observe that this class is exactly the same as the class of densely defined
closed operators whose generalized inverse is compact. Finally, we show that
these operators possess a non trivial hyperinvariant subspace.

We organize the article as follows: In the second section we provide basic re-
sults which will be used throughout the article. In the third section, we define
minimum attaining property for densely defined closed operators and prove sev-
eral characterizations. Some of the results in this section generalize the existing
results of bounded operators and some of them are new. In the fourth section, we
define absolutely minimum attaining operators and show that all such operators
have a closed range. In particular, we show that an injective densely defined
closed operator is absolutely minimum attaining if and only if its Moore-Penrose
inverse is compact. Using this result, we deduce several consequences. One of
the important consequences is that every such operator has a non trivial hyper
invariant subspace.

2. Preliminaries

In this section we introduce some basic notations, definitions and results that
are needed to prove our main results.

Throughout the article we consider infinite dimensional complex Hilbert spaces
which will be denoted by H,H1, H2 etc. The inner product and the induced
norm are denoted by 〈·〉 and ||.||, respectively. Let T be a linear operator with
domain D(T ), a subspace of H1 and taking values in H2. If D(T ) is dense in
H1, then T is called a densely defined operator. The graph G(T ) of T is defined
by G(T ) := {(Tx, x) : x ∈ D(T )} ⊆ H1 ×H2. If G(T ) is closed, then T is called
a closed operator. Equivalently, T is closed if and only if (xn) is a sequence in
D(T ) such that xn → x ∈ H1 and Txn → y ∈ H2, then x ∈ D(T ) and Tx = y.

By the closed graph Theorem [7], an everywhere defined closed operator is
bounded. Hence the domain of an unbounded closed operator is a proper subspace
of a Hilbert space.

The space of all bounded operators between H1 andH2 is denoted by B(H1, H2)
and the class of all closed operators between H1 and H2 is denoted by C(H1, H2).
We write B(H,H) = B(H) and C(H,H) = C(H).

If T ∈ C(H1, H2), then the null space and the range space of T are denoted by
N(T ) and R(T ) respectively and the space C(T ) := D(T ) ∩N(T )⊥ is called the
carrier of T . In fact, D(T ) = N(T )⊕⊥ C(T ) [6, page 340].

For a densely defined operator, there exists a unique linear operator (in fact, a
closed operator) T ∗ : D(T ∗) → H1, with

D(T ∗) := {y ∈ H2 : x → 〈Tx, y〉 for all x ∈ D(T ) is continuous} ⊆ H2

satisfying 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ D(T ) and y ∈ D(T ∗). it is to be noted
that T ∗ exists if and only if T is densely defined.



MINIMUM ATTAINING CLOSED OPERATORS 3

If S and T are closed operators with the property that D(T ) ⊆ D(S) and
Tx = Sx for all x ∈ D(T ), then S is called the restriction of T and T is called
an extension of S. Furthermore, S = T if and only if S ⊆ T and T ⊆ S.

If S ∈ B(H) and T ∈ C(H) is densely defined, the we say S and T are commut-
ing if ST ⊆ TS. That is, D(ST ) ⊆ D(TS) and STx = TSx for all x ∈ D(ST ).

A densely defined operator T ∈ C(H) is said to be normal if T ∗T = TT ∗,
self-adjoint if T = T ∗ and positive if 〈Tx, x〉 ≥ 0 for all x ∈ D(T ).

If T is positive, then there exists a unique positive operator S such that T = S2.
The operator S is called the square root of T and it is denoted by S = T

1

2 .
If T ∈ C(H1, H2) is densely defined, then the operator |T | := (T ∗T )

1

2 is called
the modulus of T . There exists a unique partial isometry V : H1 → H2 with
initial space R(T ∗) and range R(T ) such that T = V |T |.

It can be verified thatD(|T |) = D(T ) andN(|T |) = N(T ) and R(|T |) = R(T ∗).
Let T ∈ C(H) be densely defined. The resolvent of T is defined by

ρ(T ) := {λ ∈ C : T − λI : D(T ) → H is invertible and (T − λI)−1 ∈ B(H)}

and

σ(T ) : = C \ ρ(T )

σp(T ) : = {λ ∈ C : T − λI : D(T ) → H is not one-to-one},

are called the spectrum and the point spectrum of T , respectively.
Let T ∈ C(H1, H2) be densely defined. A subspace D of D(T ) is called a core

for T if for any x ∈ D(T ), there exists a sequence (xn) ⊂ D such that lim
n→∞

xn = x

and lim
n→∞

Txn = Tx. In other words, D is dense in the graph norm, which is

defined by ‖|x‖| := ‖x‖ + ‖Tx‖ for all x ∈ D(T ). It is a well known fact that
D(T ∗T ) is a core for T (see [27, Proposition 3.18, page 47] for details).

If M is a closed subspace of a Hilbert space H , then PM denotes the orthogonal
projection PM : H → H with range M , and SM := {x ∈ M : ‖x‖ = 1} is the unit
sphere of M .

We refer [1, 4, 5, 7, 20, 27] for the above basics of unbounded operators.
Here we recall definition and properties of the Moore-Penrose inverse (or gener-

alized inverse) of a densely defined closed operator that we need for our purpose.
We refer [6] for more details on this topic.

Let T ∈ C(H1, H2) be densely defined. Then there exists a unique densely
defined operator T † ∈ C(H2, H1) with domain D(T †) = R(T )⊕⊥ R(T )⊥ and has
the following properties:

(1) TT †y = PR(T ) y, for all y ∈ D(T †)

(2) T †Tx = PN(T )⊥ x, for all x ∈ D(T )

(3) N(T †) = R(T )⊥.

This unique operator T † is called the Moore-Penrose inverse of T .
The following property of T † is also well known.

For every y ∈ D(T †), let

L(y) :=
{

x ∈ D(T ) : ||Tx− y|| ≤ ||Tu− y|| for all u ∈ D(T )
}

.
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Here any u ∈ L(y) is called a least square solution of the operator equation
Tx = y. The vector x = T †y ∈ L(y), ||T †y|| ≤ ||x|| for all x ∈ L(y) and it is
called the least square solution of minimal norm. A different treatment of T † is
given in [6, Pages 314, 318-320], where it is called “the Maximal Tseng generalized
Inverse”.

Here we recall some properties of T † that we will be using very frequently.

Theorem 2.1. [6, Page 320] Let T ∈ C(H1, H2) be densely defined. Then

(1) D(T †) = R(T )⊕⊥ R(T )⊥, N(T †) = R(T )⊥ = N(T ∗)
(2) R(T †) = C(T )
(3) T † is densely defined and T † ∈ C(H2, H1)
(4) T † is continuous if and only R(T ) is closed
(5) T †† = T
(6) T ∗† = T †∗

(7) N(T ∗†) = N(T )
(8) T ∗T and T †T ∗† are positive and (T ∗T )† = T †T ∗†

(9) TT ∗ and T ∗†T † are positive and (TT ∗)† = T ∗†T †.

3. Minimum attaining Operators

In this section first we discuss some important properties of minimum attaining
operators. These operators for the bounded case was discussed in [13] and the
unbounded case in [25]. It is proved that this class is dense in the class of densely
defined closed operators with respect to the gap topology.

Definition 3.1. [6, 5] Let T ∈ C(H1, H2) be densely defined. Then

m(T ) := inf {‖Tx‖ : x ∈ SD(T )}

γ(T ) := inf {‖Tx‖ : x ∈ SC(T )},

are called the minimum modulus and the reduced minimum modulus of T , respec-
tively. The operator T is said to be bounded below if and only if m(T ) > 0.

Remark 3.2. If T ∈ C(H1, H2) is densely defined, then

(a) By definition, we have m(T ) ≤ γ(T ). More over, if T is one-to-one,
m(T ) = γ(T ) since D(T ) = C(T )

(b) m(T ) > 0 if and only if R(T ) is closed and T is one-to-one
(c) Since D(T ) = D(|T |) and ‖Tx‖ = ‖|T |x‖ for all x ∈ D(T ), we can

conclude that m(T ) = m(|T |) and γ(T ) = γ(|T |).

Remark 3.3. If T ∈ C(H) is densely defined and R(T ) is closed, then γ(T ) =
1

‖T †‖
.

Recall that T ∈ B(H1, H2) is said to be norm attaining if there exists x0 ∈ SH1

such that ‖Tx0‖ = ‖T‖. We denote the class of all norm attaining operators be-
tween H1 and H2 by N (H1, H2). In case H1 = H2 = H , we denote this by N (H).
In a similar way, we can define operators that attain minimum modulus. The
class of bounded operators that attain minimum modulus is defined and several
characterizations are proved in [12]. Here we discuss the same for unbounded
operators.
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Definition 3.4. Let T ∈ C(H1, H2) be densely defined. If there exists x0 ∈ SD(T )

such that ‖Tx0‖ = m(T ), then we call T to be minimum attaining.

We write

Mc(H1, H2) = {T ∈ C(H1, H2) : T is densely defined and minimum attaining}

and Mc(H,H) = Mc(H).

Remark 3.5. Let T ∈ C(H1, H2) be densely defined.
(1) If T is not one-to-one, then m(T ) = 0 and there exists a x0 ∈ SN(T ) such

that Tx0 = 0. Hence T ∈ Mc(H1, H2).
(2) If T is one-to-one and R(T ) is not closed, then m(T ) = 0. But there does

not exists x0 ∈ D(T ) such that ‖Tx0‖ = 0, since T is one-to-one. Thus
T /∈ Mc(H1, H2).

From the above two observations it is apparent that the injectivity of the
operator plays an important role in the minimum attaining property.

First, we establish some results related to the minimum modulus of a densely
defined closed operator, which are useful in discussing the minimum attaining
property.

Proposition 3.6. Let T ∈ C(H) be densely defined and normal. Then

(1) m(T ) = d(0, σ(T ))
(2) m(T n) = m(T )n.

Proof. If m(T ) = 0, then T is not invertible, so 0 ∈ σ(T ) and d(0, σ(T )) = 0. If
m(T ) > 0, then T−1 ∈ B(H). In this case, m(T ) = γ(T ) = 1

‖T−1‖
. Therefore,

1

‖T−1‖
=

1

sup {µ : µ ∈ σ(T−1)}

=
1

sup { 1
λ
: λ ∈ σ(T )}

= inf {λ : λ ∈ σ(T )}

= d(0, σ(T )). �

Proof of (2): It is easy to verify that T n is normal. Hence, by (1) and the
spectral mapping theorem we can conclude that

m(T n) = inf {|µ| : µ ∈ σ(T n)}

= inf {|λn| : λ ∈ σ(T )}

= inf {|λ|n : λ ∈ σ(T )}

= m(T )n.

Corollary 3.7. If T ∈ C(H1, H2) is densely defined, then

(1) m(T ) = d(0, σ(|T |))
(2) m(T ∗T ) = m(T )2.

Proof. We have m(T ) = m(|T |) = d(0, σ(|T |)), by (1) of Proposition 3.6. Also,
m(T ∗T ) = m(|T |2) = d(0, σ(|T |2)) = d(0, σ(|T |))2 = m(|T |)2 = m(T )2. Here we
have used both (1) and (2) of Proposition 3.6 to get the conclusion. �
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Proposition 3.8. Let T ∈ C(H) be densely defined and positive. Then

m(T ) = inf
{

〈Tx, x〉 : x ∈ SD(T )

}

= mT .

Proof. First note that D(T ) ⊆ D(T
1

2 ). Next,

mT = inf
{

〈Tx, x〉 : x ∈ SD(T )

}

= inf
{

〈T
1

2x, T
1

2x〉 : x ∈ SD(T )

}

≥ inf
{

‖T
1

2x‖2 : x ∈ D(T
1

2 )
}

= m(T
1

2 )2.

But m(T
1

2 ) = inf {λ : λ ∈ σ(T
1

2 )} by Corollary 3.7. As σ(T ) = {λ2 : λ ∈ σ(T
1

2 )},

we have that m(T
1

2 )2 = m(T ) and hence mT ≥ m(T ).
On the other hand, we have

mT ≤ 〈Tx, x〉 for all x ∈ SD(T )

= 〈T
1

2x, T
1

2x〉 for all x ∈ SD(T )

= ‖T
1

2x‖2 for all x ∈ SD(T ).

Next, we claim that the above inequality holds for all x ∈ D(T
1

2 ). To this end,

let x ∈ D(T
1

2 ). Since, D(T ) is a core for T
1

2 , there exists a sequence (xn) ⊂ D(T )

such that lim
n→∞

xn → x and lim
n→∞

T
1

2xn = T
1

2x. Hence ‖T
1

2x‖2 = lim
n→∞

‖T
1

2xn‖
2 ≥

mT . As this is true for all x ∈ D(T
1

2 ), it follows that m(T ) ≥ mT .
By the above two observations the conclusion follows. �

Proposition 3.9. Let T ∈ C(H1, H2) be densely defined and m(T ) = m(T ∗).
Also, assume that R(T ) is closed. Then T ∈ Mc(H1, H2) if and only if T ∗ ∈
Mc(H2, H1).

Proof. Clearly, if m(T ) = m(T ∗) = 0, since R(T ) closed, both T and T ∗ are not
one-to-one. Hence both are minimum attaining. Now assume that m(T ) > 0.
It is sufficient to prove one implication, since T ∗∗ = T and m(T ) = m(T ∗). By
Proposition 3.13, T ∈ Mc(H1, H2) if and only if there exists a x0 ∈ SD(|T |) such
that |T |x0 = m(T )x0. That is T

∗Tx0 = m(T )|T |x0. Hence

‖T ∗Tx0‖

‖Tx0‖
= m(T )

‖|T |x0‖

‖Tx0‖
= m(T ),

proving T ∗ ∈ Mc(H2, H1). �

Remark 3.10. Let T ∈ C(H) be densely defined and normal. Then D(T ) =
D(T ∗) and ‖Tx‖ = ‖T ∗x‖ for all x ∈ D(T ). Hence T ∈ Mc(H) if and only if
T ∗ ∈ Mc(H). Clearly, in this case m(T ) = m(T ∗). Note that in this case we
don’t have to assume that the range of T to be closed.

We recall that if T ∈ C(H1, H2) is densely defined, then the numerical range
W (T ) of T is defined by W (T ) = {〈Tx, x〉 : x ∈ SD(T )}.

Proposition 3.11. If T ∈ C(H) is positive, then the following are equivalent;

(1) T ∈ Mc(H)
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(2) m(T ) ∈ σp(T )
(3) m(T ) is an extreme point of W (T ).

Proof. Proof of (1) ⇒ (2) : Choose x0 ∈ SD(T ) such that ‖Tx0‖ = m(T ). Since,
T −m(T )I is positive, and by the Cauchy-Scwarz inequality, we get that

m(T ) ≤ 〈Tx0, x0〉 ≤ ‖Tx0‖ = m(T ),

or m(T ) = 〈Tx0, x0〉. Therefore,

‖Tx0 −m(T )x0‖
2 = ‖Tx0‖

2 +m(T )2 − 2m(T )〈Tx0, x0〉

= 2m(T )2 − 2m(T )2

= 0.

That is, Tx0 = m(T )x0. Clearly, if m(T ) ∈ σp(T ), then T ∈ Mc(H).
Proof of (2) ⇒ (3) : Let x0 ∈ SD(T ) be such that Tx0 = m(T )x0. Then

m(T ) = 〈Tx0, x0〉 ∈ W (T ). Since, m(T ) = mT by Proposition 3.8, the conclusion
follows. The other way implication follows by the main theorem of [11]. �

Using Proposition 3.11, we can prove the following.

Proposition 3.12. Let T ∈ C(H) be densely defined and positive. Then T ∈

Mc(H) if and only if T
1

2 ∈ Mc(H).

Proof. If T
1

2 ∈ Mc(H), then m(T
1

2 ) ∈ σp(T
1

2 ), which implies that m(T ) ∈ σp(T ).
By Proposition 3.11, T ∈ Mc(H).

Conversely, if T ∈ Mc(H), thenm(T ) ∈ σp(T ), by Proposition 3.11. If m(T ) =

0, then m(T
1

2 ) = 0 and hence T
1

2 ∈ Mc(H). Next, assume that m(T ) > 0. Then

m(T
1

2 ) > 0 and

T −m(T )I =
(

T
1

2 +m(T )
1

2 I
)(

T
1

2 −m(T )
1

2 I
)

.

As T
1

2 +m(T )
1

2 I has a bounded inverse, we have that T
1

2 −m(T )
1

2 I is not one-

to-one. Hence m(T
1

2 ) ∈ σp(T
1

2 ). The conclusion follows by Proposition 3.11. �

Theorem 3.13. Let T ∈ C(H1, H2) be densely defined. Then the following state-
ments are equivalent:

(1) T ∈ Mc(H1, H2)
(2) |T | ∈ M(H1)
(3) T ∗T ∈ M(H1).

Proof. The equivalence of (1) and (2) follows by the observation that D(T ) =
D(|T |) and ‖Tx‖ = ‖|T |x‖ for all x ∈ D(T ). The equivalence of (2) and (3)
follows by the fact that T ∗T = |T |2 and Proposition 3.12. �

Example 3.14. Let D = {(xn) ∈ ℓ2 :

∞
∑

n=1

n2|xn|
2 < ∞}. Define T : D → ℓ2 by

T ((x1, x2, x3, . . . , )) = ((0, x1, 2x2, 3x3, . . . )), for all (xn) ∈ D.

Clearly, T is densely defined closed operator. Note that T ∗T (xn) = (n2xn)
for all (xn) ∈ D(T ∗T ). It can be easily calculated that σ(T ∗T ) = σp(T

∗T ) =
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{n2 : n ∈ N}. Hence m(T ∗T ) = 1 and T ∗T ∈ M(ℓ2). By Theorem 3.13, we can
conclude that T ∈ M(ℓ2) and by Corollary 3.7 m(T ) = 1.

Proposition 3.15. Let T be densely defined and positive. Then T ∈ Mc(H) if
and only if T n ∈ Mc(H) for each n ≥ 1.

Proof. Let T ∈ Mc(H). Then by Proposition 3.11, there exists x0 ∈ D(T ) such
that Tx0 = m(T )x0. Observe that x0 ∈ D(T 2). This implies that T 2x0 =
m(T )2x0 = m(T 2)x0, by Proposition 3.6. That is x0 ∈ D(T 4) ⊆ D(T 3). With
this, we have T 3x0 = m(T )3x0. By the induction argument we can show that
T nx0 = m(T )nx0. By Proposition 3.11, it follows that T n ∈ Mc(H).

To prove the converse, assume that n > 1 and T n ∈ Mc(H). Choose x0 ∈ SD(T )

such that T nx0 = m(T n)x0. As m(T n) = m(T )n, if m(T n) = 0, then m(T ) = 0.
In this case xo ∈ N(T n). That is T n−2x0 ∈ N(T 2) = N(T ). Hence x0 ∈ N(T n−1).
Proceeding in this we can conclude that x0 ∈ N(T ), proving T ∈ Mc(H).

Next assume that m(T ) > 0. Since T is positive, T−1 ∈ B(H). Hence Tx0 =
m(T )x0 implies that

T n−1x0 = T−1T nx0 = m(T )nT−1x0 = m(T )n
x0

m(T )
= m(T )n−1x0.

By proceeding in this way, we can conclude that Tx0 = m(T )x0. Hence T ∈
Mc(H). �

Proposition 3.16. Let T ∈ Mc(H1, H2) be one-to-one. Then R(T ) is closed.

Proof. If R(T ) is not closed, then m(T ) = 0. Since T ∈ Mc(H1, H2), there exists
x0 ∈ SD(T ) such that ‖Tx0‖ = 0, but contradicts T to be one-to-one. Thus R(T )
is closed. �

Remark 3.17. The condition one-one ness is not necessary in Proposition 3.16.
For example, let P be a bounded orthogonal projection. Then R(P ) is closed and
it is minimum attaining but not one-to-one.

Corollary 3.18. Let T ∈ Mc(H1, H2). Then T is one-to-one if and only T
bounded below.

Next, we will establish a relation between the minimum attaining property of
the operator and the norm attaining property of its generalized inverse. First we
prove a few results needed for this purpose.

Proposition 3.19. Let T ∈ C(H1, H2) be densely defined. Then

(1) |T †| = |T ∗|†

(2) |(T †)∗| = |T |†.

Proof. Proof of (1): By definition of |T †|, and by Theorem 2.1,

|T †| =
(

(T †)∗T †
)

1

2 =
(

(TT ∗)†
)

1

2 =
(

(|T ∗|2)†
)

1

2 =
(

(|T ∗|)†(|T ∗|)†
)

1

2 = |T ∗|†.

The proof of (2) can be obtained by replacing T by T ∗ in (1) and observing that
(T ∗)† = (T ∗)† and (T ∗)∗ = T . �

Theorem 3.20. Let T ∈ C(H1, H2) be densely defined and one-to-one. Then the
following statements are equivalent;
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(1) T ∈ Mc(H1, H2)
(2) R(T ) is closed and T † ∈ N (H2, H1).

Proof. First assume that T ∈ Mc(H1, H2). Note that R(T ) is closed, by Propo-
sition 3.16. As T is one-to-one, m(T ) > 0. Choose x0 ∈ D(T ) such that
|T |x0 = m(T )x0. Hence

m(T )|T |−1x0 = |T |−1|T |x0 = x0.

So

|T |−1x0 =
1

m(|T |)
x0. (3.1)

By Proposition 3.19, we have |T |−1 = |(T †)∗| = (T ∗)†. Since m(|T |) = m(T ) =
1

‖T †‖
=

1

‖|T †|‖
, Equation 3.1, takes the form |T †|x0 = ‖|T †|‖x0. Hence the

conclusion follows.
To prove the other implication, let T † ∈ N (H2, H1). Then clearly, R(T ) is

closed. By [12, Proposition 2.5], S := (T †)∗ ∈ N (H1, H2). Hence by Proposition
3.19, we have |S| = |T |†. Since |T |† is positive and norm attaining, there exists
x0 ∈ SH1

such that

|S|x0 = ‖S‖x0 = ‖T †‖x0 =
1

m(T )
x0. (3.2)

Note that x0 ∈ R(|T |†) = C(|T |) = C(T ) ⊆ N(T )⊥. Premultiplying Equation
3.2 by |T | and noting that R(|T |) = N(T )⊥, we have |T |x0 = m(T )x0, concluding
|T | ∈ M(H1). Hence T ∈ Mc(H1, H2) by Theorem 3.13. �

Next, we show that minimum attaining property of a closed densely defined
operator is related to the minimum attaining property of the corresponding
bounded transform. If T ∈ C(H1, H2) is densely defined, then the operator

ZT := T (I + T ∗T )−
1

2 is called the bounded transform of T . More over, T =

ZT (I − Z∗
TZT )

− 1

2 . We refer [27, section 7.3, page 142] for more details about
these operators.

Proposition 3.21. Let T ∈ C(H1, H2) be densely defined. Then

(1) m(ZT ) =
m(T )

√

1 +m(T )2

(2) m(T )2 =
m(ZT )

2

1−m(ZT )2

(3) T ∈ Mc(H1, H2) if and only if ZT ∈ Mc(H1, H2).

Proof. Proof of (1): We have that

m(ZT )
2 = m(Z∗

TZT ) = m(I−(I+T ∗T )−1) = 1−‖(I+T ∗T )−1‖ = 1−
1

m(I + T ∗T )
,



10 S. H. KULKARNI, G. RAMESH

by Remark 3.3. Hence

m(ZT )
2 = 1−

1

1 +m(T )2

=
m(T )2

1 +m(T )2
.

Proof of (2): Note that T ∗T = Z∗
TZT (I − Z∗

TZT )
−1 = (I − Z∗

TZT )
−1 − I. Thus

m(T )2 = m(T ∗T ) = m(I−Z∗
TZT )

−1−1 =
1

‖I − Z∗
TZT‖

−1 =
1

1−m(Z∗
TZT )

−1,

by Remark 3.3. Hence

m(T )2 =
1

1−m(ZT )2
− 1 =

m(ZT )
2

1−m(ZT )2
.

Proof of (3): In view of Theorem 3.13, it is enough to prove T ∗T ∈ M(H1) if
and only if Z∗

TZT ∈ M(H1). We know by (2) of Proposition 3.11, that T ∗T ∈
M(H1) if and only if m(T )2 ∈ σp(T

∗T ). Since, Z∗
TZT = T ∗T (I + T ∗T )−1 and

m(Z∗
TZT ) = m(T )2

1+m(T )2
, it can be verified that m(T )2 ∈ σp(T

∗T ) if and only if

m(Z∗
TZT ) ∈ σp(Z

∗
TZT ). �

4. Absolutely minimum attaining operators

In this section, we define absolutely minimum attaining operators and describe
the structure of such operators.

Definition 4.1. Let T ∈ C(H1, H2) be densely defined. Then T is called absolutely
minimum attaining operator if T |M : D(T ) ∩M → H2 is minimum attaining for
each non- zero closed subspace M of H1. In other words, T is absolutely minimum
attaining if there exists x0 ∈ D

(

T |M
)

with ‖x0‖ = 1 such that ‖Tx0‖ = m(T |M).

Note that if T ∈ C(H1, H2) is densely defined and M is a closed subspace of
H , then the restriction operator T |M : D(T ) ∩M → H2 is a closed operator and

it is densely defined as D(T |M) is dense in the Hilbert space D(T |M).
We denote the set of all absolutely minimum attaining operators between H1

and H2 by AMc(H1, H2) and in case if H1 = H2 = H , this is denoted by
AMc(H). This class of operators was introduced and studied in detail by Car-
vajal and Neves in [13]. The structure of positive absolutely minimum attaining
bounded operators is studied in [16].

Proposition 4.2. Let T ∈ AMc(H1, H2). Then R(T ) is closed.

Proof. Since T ∈ AMc(H1, H2), we have T0 = T |N(T )⊥ ∈ AMc(N(T )⊥, H2)
and one-to-one. Hence by Proposition 3.16, R(T0) is closed. It is clear that
R(T ) = R(T0). �

Remark 4.3. The converse of Proposition 4.2 need not be true. Let P be a
bounded orthogonal projection with infinite dimensional null space and infinite
dimensional range space. Then R(P ) is closed but P is not absolutely minimum
attaining by [13, Lemma 3.2].
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Let M be a closed subspace of H and T ∈ C(H) be densely defined. Then M
is said to be invariant under T , if T (M ∩D(T )) ⊆ M .

Let P := PM . If P (D(T )) ⊆ D(T ) and (I − P )(D(T )) ⊆ D(T ), then

T =

(

T11 T12

T21 T22

)

,

where Tij = PiTPj|Mj (i, j = 1, 2). Here P1 = P and P2 = I − P . It is known
that M is invariant under T if and only if T21 = 0. Also, M reduces T if and only
if T21 = 0 = T12.

Remark 4.4. Let T ∈ C(H1, H2) be densely defined. Assume that M reduces T
and T1 = T |M and T2 = T |M⊥. Then the following can be easily verified:

(1) m(T ) = min{m(T1), m(T2)}
(2) T ∈ Mc(H) if and only if the operator Tj with m(Tj) = m(T ), (j =

1 or 2), is minimum attaining.

Lemma 4.5. Let T ∈ C(H) be densely defined. If M reduces T , then T †|M =
(T |M)†.

Proof. Since M is reducing subspace, we have

T =

(

T1 0
0 T2

)

,

where T1 = T |M and T2 = T |M⊥. Since R(T ) is closed, by Theorem [4, page 287,

V.5], R(Ti) is closed for i = 1, 2. Let S =

(

T †
1 0

0 T †
2

)

. Note that S ∈ B(H) and

it can be verified that S satisfies all the conditions of the Moore-Penrose inverse.
Since T † is unique, it follows that S = T †. This proves the claim. �

Theorem 4.6. Let T ∈ C(H) be densely defined and have a bounded inverse. Let
M be a subspace of H. Then

(1) m(T |M) =
1

‖T−1|T (M∩D(T ))‖
(2) if M is closed, then T (M ∩D(T )) is closed

(3) If N is any subspace of H, then m(T |T−1(N )) =
1

‖T−1|N‖
.

Furthermore, if N is closed and T ∈ B(H), then T−1(N) is closed.
(4) T ∈ AMc(H) if and only if T−1 ∈ AN (H).
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Proof. Proof of (1): First, note that as T is one-to-one, we have D(T ) = C(T )
and m(T ) = γ(T ). By definition,

m(T |M) = inf
{‖Tx‖

‖x‖
: x ∈ M ∩D(T ), x 6= 0

}

=
1

sup
{ ‖x‖

‖Tx‖
: x ∈ M ∩ C(T ), x 6= 0

}

=
1

sup
{‖T−1y‖

‖y‖
: y = Tx ∈ T (M ∩D(T )), x 6= 0

}

=
1

‖T−1|T (M∩D(T ))‖
.

Proof of (2): Let N := T (M ∩ D(T )) and let y ∈ N . Let (xn) ⊂ M ∩ D(T )
be such that y = lim

n→∞
Txn. Since T−1 ∈ B(H), it follows that lim

n→∞
xn = T−1y.

Since M is closed, we can conclude that T−1y ∈ M ∩D(T ). Since R(T ) is closed,
y ∈ R(T ). Hence y = T (T−1y) ∈ T (M ∩D(T )).

Proof of (3): This goes along the similar lines of (1) and (2).
Proof of (4): If M = H , then by Theorem 3.20, we have that T ∈ Mc(H) if and

only if T−1 ∈ N (H). Hence assume that {0} 6= M ⊂ H . Let T−1 ∈ AN (H). Let
X = T (M ∩D(T )) and RX = T−1|X . By (2), X is closed. Since RX ∈ N (X,H),
there exists y0 ∈ SX , such that ‖RXy0‖ = ‖RX‖. This is equivalent to the fact
that R∗

XRXy0 = ‖RX‖2y0. Let y0 = Tx0 for some x0 ∈ M ∩ D(T ), we get

R∗
Xx0 = ‖RX‖2Tx0. Therefore ‖Tx0‖ =

‖R∗
Xx0‖

‖RX‖2
≤

‖x0‖

‖RX‖
= m(T |M) ‖x0‖ by

(1). Writing z0 =
x0

‖x0‖
, we get that ‖Tz0‖ ≤ m(T |M). But the other inequality

holds clearly. Hence T |M ∈ Mc(M,H).
Conversely, assume that T ∈ AMc(H). Let N be a closed subspace of H

and let M := T−1(N) ⊆ C(T ). Since T ∈ AMc(H), we have TM := T |M ∈
Mc(M,H). It can be easily verified that TM is closed, since T is closed. Since

D(T ) ∩ M is dense in D(T ) ∩M , TM is densely defined operator. Hence T ∗
M :

D(T ∗
M) → M exists. By Theorem 3.13 and Proposition 3.11, there exists x0 ∈

SD(T ∗
M

TM ) such that

T ∗
MTMx0 = m(TM )2x0. (4.1)

As T is bounded below, TM is bounded below and hence m(TM ) > 0. Let
x0 = T−1y0 for some y0 ∈ N . Then Equation 4.1 takes the form:

T ∗
My0 = m(TM)2T−1y0. (4.2)

First, observe that R(TM) = TM(M ∩ D(T )) = T (D(T ) ∩ M) = T (M) =
T (T−1(N)) = N . Hence y0 ∈ N = R(TM) = N((TM )∗)⊥. Taking norm both
sides of Equation 4.2, we get

‖T−1y0‖ =
‖T ∗

My0‖

m(TM)2
≥

γ(T ∗
M )‖y0‖

m(TM )2
=

γ(TM)‖y0‖

m(TM )2
≥

m(TM)‖y0‖

m(TM )2
=

‖y0‖

m(TM)
.



MINIMUM ATTAINING CLOSED OPERATORS 13

Hence z0 =
y0

‖y0‖
∈ SN and ‖T−1(z0)‖ = ‖T−1|N‖. �

Corollary 4.7. Let T ∈ B(H) be such that T−1 ∈ B(H). Then T ∈ AMc(H) if
and only if T−1 ∈ AN (H).

Theorem 4.8. Let T ∈ AMc(H), positive and not bounded. Assume that T
is one-to-one. Then there exists an unbounded (increasing) sequence {λn} of
eigenvalues of T with corresponding eigenvectors {φn} such that

(1)

D(T ) = {x ∈ H :
∞
∑

n=1

λ2
n |〈x, φn〉|

2 < ∞} and

Tx =
∞
∑

n=1

λn〈x, φn〉φn, for all x ∈ D(T ).

The series in the above representation converges in the strong operator
topology. Moreover, T−1 is compact.

(2) σ(T ) = {λn : n ∈ N}=σp(T )
(3) if µ ∈ σp(T ), then µ is an eigenvalue with finite multiplicity
(4) span{φn : n ∈ N} = H.

Proof. Proof of (1): First note that as T is one-to-one and R(T ) is closed, T is
bounded below. Since T ≥ 0, T−1 exists and bounded. If T ∈ AMc(H), then
T−1 ∈ AN (H) by Theorem 4.6. Hence by [3, Theorem 2.5], there exists unique
triple (K,F, α), where K ∈ K(H) is positive, F ∈ F(H) positive and α ≥ 0
such that KF = 0 = FK, F ≤ αI and T−1 = αI + K − F . If α = 0, then
F = 0 and hence T−1 = K ∈ K(H). Next, assume that α > 0. In this case,
R(T−1) = D(T ) is closed by [3, Proposition 2.8] is closed. Since T is densely
defined, we must have that D(T ) = H . By the closed graph theorem T must be
bounded, a contradiction. Hence α > 0 is not possible. This implies that α = 0
and hence T−1 ∈ K(H).

By the spectral theorem, there exists increasing sequence (µn) of positive eigen-
values of T−1 with corresponding eigenvectors {φn : n ∈ N} such that

T−1y =
∞
∑

n=1

µn〈y, φn〉φn, for all y ∈ H. (4.3)

The sequence µn → 0 as n → ∞. More over, the above series converges to T−1

in the operator norm of B(H). We can also observe that the sequence (µn) is an
infinite sequence. Otherwise, T−1 is a finite rank operator and σ(T ) is bounded.
By [26] this implies that T is bounded which leads to a contradiction. Also,
since T−1 is compact, σ(T−1) = {µn : n ∈ N} = σp(T ) and each µn has finite
multiplicity. Also, µn+1 ≤ µn for each n ∈ N.
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Let λn := µ−1
n for all n ∈ N. As T−1 is compact, by [10, Theorem 6.1, page

214], it follows that

D(T ) = {x ∈ H :

∞
∑

n=1

λ2
n |〈x, φn〉|

2 < ∞} and

Tx =

∞
∑

n=1

λn〈x, φn〉φn, for all x ∈ D(T ).

On the other hand, if T−1 is compact, by Theorem 4.6, T ∈ AMc(H).
Proof of statement (2) is clear. The statement (3) is proved in (1).
Proof of (4): Since T−1 is compact, R(T−1) = D(T ) is separable and by the

representation above, we have thatH = D(T ) = R(T−1) = span{vn : n ∈ N}. �

Remark 4.9. If T ∈ B(H), then the conclusion (1) of Theorem 4.8 is not true.
The unboundedness of the operator is used to get the inverse to be compact.

Theorem 4.10. Let T ∈ C(H) be densely defined and one-to-one but not bounded.
Then

(1) T ∈ AMc(H) if and only if T ∗T ∈ AMc(H)
(2) T ∈ AMc(H) if and only if T † ∈ K(H).

Proof. Proof of (1): If T ∈ AMc(H), then R(T ) is closed. As T is one-to-one, T
is bounded below. Also, since |T | and T ∗T are bounded below and positive, both
have bounded inverse. Hence

T ∈ AMc(H) ⇔ |T | ∈ AMc(H) ⇔ |T |−1 ∈ K(H) (by Theorem 4.8)

⇔ |T |−2 ∈ K(H)

⇔ (T ∗T )−1 ∈ K(H)

⇔ T ∗T ∈ AMc(H) (by Theorem 4.8).

Proof of (2): By (1),

T ∈ AMc(H) ⇔ |T | ∈ AMc(H) ⇔ |T |−1 ∈ K(H) (by Theorem 4.8)

⇒ |T |† ∈ K(H).

On the other hand, if T † ∈ K(H), then R(T ) is closed. As T is one-to-one, T
must be bounded below. This implies that |T |−1 ∈ B(H). Thus,

T † ∈ K(H) ⇔ (T ∗)† ∈ K(H) ⇔ |(T ∗)†| ∈ K(H)

⇔ |T |† = |T |−1 ∈ K(H) (by (2) of Proposition 3.19 )

⇔ |T | ∈ AMc(H)

⇔ T ∈ AMc(H). �

Theorem 4.11. Let T ∈ C(H) be densely defined unbounded and have a bounded
inverse. Then T ∈ AMc(H) if and only if T ∗ ∈ AMc(H).
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Proof. First observe that both T and T ∗ are bounded below. We know that T ∈
AMc(H) if and only if T−1 ∈ K(H). This is true if and only if (T ∗)−1 ∈ K(H).
Now, by 2 of Theorem 4.10, this is equivalent to the fact that T ∗ ∈ AMc(H). �

Definition 4.12 (Hyper invariant subspace). Let T ∈ C(H) be densely defined
and M be a closed subspace of H. Then M is said to be hyperinvariant subspace
of T if M is invariant under every S ∈ B(H) such that ST ⊆ TS.

Theorem 4.13. (Lomonosov )[22] Every operator that commutes with a non-zero
compact operator and is not a multiple of the identity has a non-trivial hyperin-
variant subspace.

Using Theorem 4.13 we will prove that every AM-operator has a non trivial
hyperinvariant subspace.

Theorem 4.14. Let T ∈ AMc(H), unbounded and T−1 ∈ B(H). Then T has a
non trivial hyper invariant subspace.

Proof. Let S ∈ B(H) be such that ST ⊆ TS. That is STx = TSx for all
x ∈ D(T ). Then it can be easily verified that T−1S = ST−1. But T−1 ∈ K(H)
by (2) of Theorem 4.10. Now, by Theorem 4.13, T−1 has a non trivial invariant
subspace, say M . Then M is invariant under S. Thus the conclusion follows. �

Now, we can drop the condition that the operator to be one-to-one in Theorem
4.8 and prove the result.

Theorem 4.15. Let T ∈ AMc(H) be, positive but not bounded. Then

(1) T † is compact
(2) R(T ) is separable.

Proof. Since N(T ) reduces T , we can write T =

(

T0 0
0 T1

)

, where T0 = T |N(T )

and T1 = TN(T )⊥ . Then by Lemma 4.5, T † =

(

T †
0 0
0 T−1

1

)

. As T1 ∈ AM(N(T )⊥),

by Theorem 4.10, T−1
1 is compact. Note that T0 = 0 if N(T ) 6= {0} and T = T1

if N(T ) = {0}. Hence T † is compact. Also R(T1) is separable by (4) of Theorem
4.8. Now the conclusion follows as R(T ) = R(T1). �

Using Theorem 4.15, we can prove a more general result.

Theorem 4.16. Let T ∈ AMc(H), but not bounded. Then

(1) T † is compact
(2) N(T )⊥ and R(T ) are separable.

Proof. Proof of (1): We have T ∈ AMc(H) if and only if |T | ∈ AMc(H). Hence
|T |† ∈ K(H) by Theorem 4.15. But, by Proposition 3.19, |T |† = |(T †)∗| and
hence (T †)∗ ∈ K(H). This implies that T † ∈ K(H).

Proof of (2): Since T † is compact, R(T †) = C(T ) is separable. Hence N(T )⊥ is
separable. Since R(T ) is closed, R(T ∗) must be closed and since N(T )⊥ = R(T ∗)
, R(T ∗) is separable. But, R(T ∗) is separable if and only if R(T ) is separable by
[23, Problem 11.4.6, page 362]. �
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Question 4.17. If T ∈ C(H) is densely defined and T † ∈ K(H). Is it true that
T ∈ AMc(H).

Theorem 4.18. Let T be a densely defined and self-adjoint, one-to-one opera-
tor on an infinite dimensional Hilbert space H which is not bounded. Then the
following are equivalent:

(1) T ∈ AMc(H)
(2) T−1 ∈ K(H)
(3) there exists a real sequence (λn) and an orthonormal basis {vn : n ∈ N} of

H such that lim
n→∞

|λn| = ∞ and Tvn = λnvn for each n ∈ N

(4) T has purely discrete spectrum
(5) the resolvent Rλ(T ) := (T − λI)−1 is compact for one, and hence for all

λ ∈ ρ(T )
(6) the embedding map JT : (D(T ), ‖ · ‖T ) → H is compact (here ‖x‖T =

(

‖x‖2 + ‖Tx‖2
)

1

2 , x ∈ D(T )).

Proof. If T ∈ AMc(H), then R(T ) is closed. As T is one-to-one, T must be
bounded below and hence T−1 ∈ B(H). Now, by (2) of Theorem 4.10, T−1 ∈
K(H). Again by (2) of Theorem 4.10, if T−1 ∈ K(H), then T ∈ AMc(H). Thus
(1) and (2) are equivalent. The equivalence of (2)-(6) follows by [27, Proposition
5.12, page 94]. �

Next, we give an example of AM-operator.

Example 4.19. Let p, p
′

, q, w be continuous real valued functions defined on [a, b]
with a < b and w(t) > 0 for all t ∈ [a, b]. Consider the real Hilbert space

H :=

{

u :

∫ b

a

|u|2w < ∞

}

with the inner product

〈u, v〉 :=

∫ b

a

u(x)v(x)w(x)dx.

Let L be the Sturm-Liouville operator given by

Lu :=
1

w
[−(pu

′

)
′

+ qu]

with

D(L) =























u ∈ H : u ∈ C2[a, b],

β1u(a) + γ1u
′

(a) = 0,

β2u(b) + γ2u
′

(b) = 0,

|β1|+ |γ1| > 0,

|β2|+ |γ2| > 0























.

Since D(L) contains continuous functions defined on [a, b] with compact support,
L is densely defined operator. Also L is symmetric (See [9, Chapter 7, section
5]. Let us assume that 0 /∈ σp(L). In this case it easy to see that L−1 is compact
and self adjoint. Let B := {φ1, φ2, . . .} is an orthonormal basis for H such that
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Lvn = µnvn, where µ1, µ2, . . . is a sequence of real numbers which are eigenvalues
of L. In this case every u ∈ H can be expressed as

u =
∞
∑

n=1

〈u, vn〉vn.

If u ∈ D(L), then
∞
∑

n=1

|〈u, vn〉|
2µ2

n < ∞

and

Lu =

∞
∑

n=1

µn〈u, vn〉vn.

Note that L−1y =

∞
∑

n=1

µ−1
n 〈y, vn〉vn for all y ∈ H . It is clear that |L−1| is

compact and by Proposition 3.19, we have |L|−1 = |L−1|. Hence by Theorem
4.18, L ∈ AMc(H).

We end up this section with the following question:

Question 4.20. Does every bounded absolutely minimum attaining operator
have a non trivial (hyper) invariant subspace?
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