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Abstract—Channel State Information (CSI) Feedback plays
a crucial role in achieving higher gains through beamforming.
However, for a massive MIMO system, this feedback overhead
is huge and grows linearly with the number of antennas. To
reduce the feedback overhead several compressive sensing (CS)
techniques were implemented in recent years but these techniques
are often iterative and are computationally complex to realize in
power-constrained user equipment (UE). Hence, a data-based
deep learning approach took over in these recent years introduc-
ing a variety of neural networks for CSI compression. Specifically,
transformer-based networks have been shown to achieve state-
of-the-art performance. However, the multi-head attention oper-
ation, which is at the core of transformers, is computationally
complex making transformers difficult to implement on a UE.
In this work, we present a lightweight transformer named
STNet which uses a spatially separable attention mechanism that
is significantly less complex than the traditional full-attention.
Equipped with this, STNet outperformed state-of-the-art models
in some scenarios with approximately 1/10th of the resources.

Index Terms—STNet, CSI Feedback, Transformers, Self-
Attention, Massive MIMO, TransNet, CSIFormer, CLNet.

I. INTRODUCTION

A massive MIMO system is equipped with hundreds of

antennas that facilitate increased throughput with reduced

BLER (Block Error Rate). Real-time channel state information

(CSI) at the base station (gNB) plays an important role to meet

the promises offered by massive MIMO. CSI at gNB allows

the base station to perform beamforming and serve multiple

users at once with minimal interference. The difficulty in this is

that the channel experienced by the user equipment (UE) in the

downlink has to be measured by UE and send it back to gNB

in real-time which is not very convenient given the limited

amount of resources at the UE end and the huge amount

of overhead caused by CSI on the uplink. In order to deal

with this problem, CSI compression methods were introduced

where we compress the channel matrix at UE to reduce the

feedback overhead and power consumption.

A Compressive Sensing (CS) based CSI feedback in FDD

systems was studied in [1] where it was achieved by using

2-D Discrete Cosine Transform (DCT) or Karhunen-Loeve

Transform (KCT). By exploiting sparsity, CS facilitates ef-

ficient data sampling at much lower rates than determined

by the Nyquist theorem. However, this method assumes the

channel matrices to be sparse which is not always the case. For

efficient compression, the spatial correlation characteristics of

the channel matrix have to be exploited which was proposed

in [2] by using a principal component analysis (PCA). Even

in this method, sparsity of the channel matrix in some basis is

assumed for efficient compression but channels don’t always

have an interpretable structure.

In order to overcome this, a data-driven approach is chosen

over an algorithmic-driven one and the usage of deep learning

in CSI compression has taken over in recent years. CSINet

[3] introduced a Convolutional Neural Network (CNN) based

Variational Auto-Encoder (VAE) to the compression problem.

This tremendously outperformed all the traditional CS-based

methods. Inspired by this, another model was developed [4]

with a larger receptor size, i.e., kernel size, of the CNN

to better capture the spatial correlation in the angular-delay

domain. However, the variability of the channel sparsity with

the scenario means that a fixed receptor size is not sufficient

to capture the correlation. Hence, a multiple-resolution CNN

with varying receptor sizes was introduced by CRNet [5].

In order to focus the resources more on highly correlated

areas and less on less correlated areas, it is useful to em-

ploy an attention mechanism on the CNNs which was first

introduced by Attention-CSINet [6] that performed better in

outdoor scenarios where the variability of correlation is more

dominant. In all these methods, real and imaginary parts of the

channel matrices are treated separately which is not efficient

in capturing the correlation in the angular domain as the

complex number as a whole contains the phase information.

To overcome this, a simple approach to combining real and

imaginary values of a channel matrix was introduced by

CLNet [7] which outperformed several models. CLNet is also

computationally less complex compared to other methods.

So far, CNNs are used for feature extraction in all the mod-

els. A transformer [8]-based architecture with a full attention

mechanism was first studied in [9] that was not very com-

petitive compared to the state-of-the-art models. A two-layer

transformer architecture named TransNet [10] was introduced

that outperformed several models by a significant amount but

the computational complexity of TransNet was very high and

not practically affordable. Another transformer-based model

with locally grouped (windowed) self-attention was studied

by CSIFormer in [11]. Although this has low complexity

compared to TransNet, the performance was sacrificed.

In this work, we introduce a spatially separable attention

mechanism [12] that can achieve state-of-the-art performance

with very less computational complexity. We also introduce a

hybrid two-stem approach in the decoder that combines CNN

with a transformer for better channel reconstruction [13]. We

then validate the performance of our model on the COST2100

dataset [14].
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Fig. 1: Proposed encoder-decoder architecture for CSI feedback aka STNet. ”CONV” represents a convolutional layer and

”CONVT” represents a transposed convolutional layer. The encoder consists of a few CONV and CONVT layers with a

spatially separable attention transformer block ”STB”. The decoder consists of two stems: the CNN stem and the transformer

stem. CR Block is a multi-resolution CNN block proposed in CRNet as shown in Fig. 2

Fig. 2: CR Block as proposed in CRNet architecture. It consists

of two paths with different kernel sizes that are concatenated

(represented by ”CONCAT” block) at the end and combined

using a 1x1 convolutional layer.

II. SYSTEM MODEL

In this work, we consider a Frequency Division Duplex

(FDD) system with Nt antennas at the base station (gNB)

and 1 antenna at the user equipment (UE) such that Nt ≫ 1.

This employs Orthogonal Frequency Division Multiplexing

(OFDM) with Ñc sub-carriers. The received signal at UE on

the nth sub-carrier can be expressed as

yn = h̃H
n
ṽnxn + wn, (1)

where, h̃n ∈ C
Nt×1, ṽn ∈ C

Nt×1, xn ∈ C and wn ∈ C

represent channel vector, precoding vector, symbol transmitted

and additive noise on the nth sub-carrier. The overall channel

matrix is of the dimension Ñc ×Nt and is expressed as

H̃ =
[

h̃1, h̃2, · · ·, h̃Ñc

]H
. (2)

The total number of feedback elements is 2NtÑC (for both

real and imaginary parts of the channel) which is huge and

impractical in real scenarios considering Nt = 32, 64, . . . and

ÑC = 1024, 2048, . . . for a massive MIMO system. So, we

reduce the overhead by making the channel matrix sparse.

Specifically, we achieve this by transforming it into angular-

delay domain [3] as follows

H̄ = FdH̃FH

a
, (3)

where, Fd and Fa are 2-D DFT matrices of dimensions Ñc×
Ñc and Nt × Nt respectively. In the delay domain, the time

delay between multipath arrivals lies within a limited period.

Using this, we can truncate the matrix H̄ by only keeping

the first Nc rows where Nc is chosen such that remaining

entries of H̄ are close to zero [3]. We define this truncated

matrix as H that has dimensions Nc×Nt. Also, we split this

matrix into real and imaginary parts and combine them as a

third dimension similar to RGB channels of an image. With

this, the overall feedback overhead becomes 2NcNt which is

significantly smaller than earlier as Nc will only be a fraction

of Ñc (total number of sub-carriers).

Now that we have the sparsified channel matrix, H , it is sent

into the encoder-decoder architecture as shown in Fig. 1 where

H is compressed into a 1-D vector of dimension M×1. Here,

we define compression ratio as γ = M
2NcNt

. This compressed

channel matrix is sent back to gNB from UE on the uplink.

gNB then decodes this fedback signal as Ĥ . This encoding

and decoding process is defined as follows

s = fe(H) & Ĥ = fd(s),

where fe, fd denote the functions of the encoder and decoder,

respectively. s is the compressed code word and Ĥ is the

estimated channel matrix by the model.

III. ARCHITECTURE

In this section, we describe a high-level overview of how

fe and fd of our proposed model STNet1 are designed.

Transformers are traditionally designed to capture global con-

text using a global self-attention mechanism which makes

them highly efficient in modeling high-level semantics that

may be sufficient for a classification task. For example, in

our model Spatially Separable Attention Transformer Block

1Source code of this paper: https://github.com/sharanmourya/Pytorch
STNet



Fig. 3: Spatially Separable Attention Mechanism (Locally

grouped self-attention (LSA) followed by Global sub-sampled

attention (GSA)).

Fig. 4: Global Sub-Sampled Attention (GSA) with sampling

performed by a convolutional layer (shown in curved lines)

followed by LSA (shown in vertical lines).

(STB) captures the long-range correlation between antennas.

But, channel reconstruction also requires low-level details in

order to minimize the reconstruction error. These low-level

details are better captured by CNNs which also provide better

generalization due to their spatial invariance. So in order to

get the best of both worlds, we use a hybrid approach in

our decoder design with two stems [13], one consisting of

a transformer and the other consisting of CNNs (Fig. 1).

A. Spatially Separable Attention Mechanism

First, let’s summarize the self-attention mechanism of a

transformer. Every channel matrix that enters the attention

block is fed to three independent linear layers as shown in

Fig. 3. The outputs of these three branches are queries (Q),

keys (K), and values (V) respectively. If the input is X , these

values are calculated as follows

Qn = XWQ
n , Kn = XWK

n , Vn = XWV
n ,

where WQ
n ,WK

n ,WV
n are the weights of the respective linear

layers on the nth head of a P headed multi-head attention

block. With this, the attention is calculated as,

An = Softmax

(

QnK
T
n√

d

)

, (4)

where An is the attention on the nth head and d is the output

dimension of Qn and Kn. This attention is then multiplied

with the values across all the heads

Yn = AnVn, (5)

which are then concatenated to get the final output.

Y = [Y1, Y2, · · · , YT ]. (6)

This is also called full attention or global attention as the

receptor region of the attention block is the full channel matrix.

This global attention mechanism has a complexity of O(L4d)
when operating on a channel of dimension L×L with encoded

dimension d [12]. One way to reduce the complexity is to

reduce the receptor region of the attention by using windowed

attention, where each channel matrix is sub-divided into m×m
smaller matrices with dimensions W × W , where W = L

m

and attention is calculated for each window separately. This is

called Locally Grouped Self-Attention (LSA) and this reduces

the complexity to O( L4

m4 d).
As the windows are fixed and do not communicate with one

another, the antenna correlation across windows is now lost

and can’t be utilized in compressing the channel matrix. To

solve this, we can introduce a global attention layer after LSA,

but that would only increase the complexity further. So, we

introduce another layer of locally grouped attention after LSA

that can capture the antenna correlations between windows.

This can be achieved by a Global Sub-Sampled Attention

(GSA) layer which is shown in Fig. 4.

In GSA, LSA’s output is first followed by a CNN layer (with

stride = W ). The output of this layer is a m×m feature map

in which each element represents a window from which it is

extracted. This now becomes keys and values (K and V ) for

another layer of windowed attention whose queries (Q) are the

same output of LSA that we used to obtain the feature map

from as shown in Fig. 4. Suppose X is the output from LSA,

we apply a CNN layer to X to get a feature map of dimensions

m × m. This feature map becomes K and V for X , which

becomes the query, Q. We are constructing the global attention

from the feature map which is a sub-sampled version of X ,

hence the name global sub-sampled attention. This GSA layer

has a complexity of O(m2L2d) [12] and with this, the total

complexity of the attention mechanism becomes O( L4

m4 d) +
O(m2L2d). The entire attention mechanism (LSA+GSA) is

shown in Fig. 3. Note that this approach of breaking down

a complex operation into two simpler operations is similar to

separable convolutions (point-wise + depth-wise) [15]. Hence,

the name spatially separable attention.

B. Spatially Separable Attention Transformer Block (STB)

STB consists of four different types of blocks which are

LSA, GSA, LayerNorm, and Multi-Layer Perceptron (MLP)

as shown in Fig. 5. MLP block has a linear layer followed

by a Gaussian Error Linear Unit (GELU) non-linearity and a

linear layer again as shown in Fig. 5. The entire architecture

of STNet with STBs is shown in Fig. 1. It can be seen that

its encoder is slightly more complex than that of CLNet [7],



Fig. 5: STB consists of both LSA and GSA each followed

by an add & normalize layer and a Multi-Layer perceptron

(MLP). MLP has a linear layer of dimension 32×32 followed

by a Gaussian Error Linear Unit (GELU).

CRNet [5], or CSInet [3] with more CNN layers and an STB

block. The reason for which is explained in Section IV.

IV. ANALYSIS

A. Model Performance

We consider a system with 32×1 antennas (i.e., 32 antennas

at BS and 1 antenna at UE). For evaluation purposes, we

choose the COST2100 dataset with two scenarios: the indoor

picocellular scenario at 5.3GHz and the outdoor rural scenario

at 300MHz. We choose Nc = 32, window size: W = 8 and

number of heads of multi-head attention: P = 4. The training,

validation, and test datasets consist of 100,000, 30,000, and

20,000 matrices, respectively. Batch size is set to 200 and

epochs to 1000. The learning rate is 0.001 and the loss function

is the Mean Squared Error (MSE) with an Adam optimizer.

MSE =
1

B

B
∑

i=1

||H − Ĥ||2, (7)

where H is the input channel matrix, Ĥ is the reconstructed

channel matrix and B is the batch size. We use Normalised

Mean Square Error (NMSE) as the performance metric which

is defined as follows

NMSE = E

{ ||H − Ĥ||2
||H||2

}

. (8)

The number of floating-point operations per second (FLOPS)

and runtime delay of the model is other important factors

when comparing the models as deployment is also done in

UEs which are power and memory-constrained devices. So we

tabulated the NMSE results of our model over the COST2100

dataset and its FLOPs and runtimes compared with various

other models in Table I.

STNet is compared with the recently proposed transformer-

based models CSIFormer [11] and TransNet [10]. TransNet

may have performed well in most cases but it takes signifi-

cantly more FLOPs to achieve that. For the indoor case with

CR = 1/16, STNet achieved 102.86% of the performance

of TransNet with just 11.6% of FLOPs. Similarly, for CR
= 1/64, STNet achieved 128.45% of the performance of

TransNet with just 10.8% of its FLOPs. Also, notice that

STNet performs better than CSIFormer in every case while

consuming less number of FLOPs. For instance consider out-

door environment with CR = 1/64. STNet achieved 116.44%
of the performance of CSIFormer with 65.88% of its FLOPs.

Also from Table I, we can see that the runtimes of STNet are

comparable to other models. It is evident from these results

that STNet exploits the trade-off between performance and

complexity perfectly.

Although the runtimes of CSIFormer and TransNet are not

available, the runtimes of a similar full attention mechanism

based model called CSITransformer [9] are available which

can be used for comparison with STNet. CSITransformer is

evaluated on a different dataset so its NMSE results are not

listed. However, the size of the channel matrices used by it

is 32 × 32 which is the same as all the other models so the

runtimes of it can be used in a fair comparison with STNet.

Thus, the runtimes of CSITransformer for CR = 1/16 and

CR = 1/32 are listed in Table I and we can see that STNet

is faster than CSITransformer in both scenarios.

B. Communication System Performance

A Massive MIMO system can achieve high capacities by

using transmit precoding. Therefore, we use the widely com-

mon linear Zero-Forcing (ZF) transmit precoding to evaluate

the overall performance improvement of the communication

system due to different CSI feedback methods [11]. For

evaluation, the spectral efficiency of each method is plotted

against SNR for various compression ratios as shown in

Fig. 6. At 10dB SNR, spectral efficiency values of all the

methods are labeled and from Fig. 6, we can conclude that

STNet performs better than every model in every scenario

and the difference is more profound for CR = 1/16 as STNet

achieves lowest NMSE for this scenario. This improvement in

system performance is achieved by STNet’s ability to capture

antenna and sub-carrier correlations at the encoder side. This

operation is so critical that the encoder consumes more than

40% of the entire STNet’s resources. For example in an indoor

scenario with CR = 1/4, STNet’s encoder has 2.09 Million

FLOPs which is 40.03% of the total FLOPs which is 5.22

Million. On the other hand, CLNet’s encoder under similar

conditions has 1.11 Million FLOPs which is 25.11% of the

total FLOPs which is 4.42 Million. Although STNet has a

slightly higher encoder complexity than CSINet, CRNet, or

CLNet, its encoder complexity would still be better than other

transformer-based models making it a promising choice for

storage and computational limited applications because of its

higher spectral efficiency and lower or similar runtime as other

models.

V. CONCLUSION

In this work, a lightweight transformer architecture with

spatially separable attention is introduced for CSI feedback.



Fig. 6: Spectral Efficiency vs SNR plots for different CSI feedback methods along with perfect CSI. Spectral efficiency values

at SNR=10dB are zoomed in and labeled for clarity.

TABLE I: Performance over Cost 2100 dataset

NMSE

Compression Ratio (γ) 1/4 1/8 1/16 1/32 1/64

Scenario Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

CSINet -17.36 -8.75 / / -8.65 -4.51 -6.24 -2.81 -5.84 -1.93

CRNet -26.99 -12.71 -16.01 -8.04 -11.35 -5.44 -8.93 -3.51 -6.49 -2.22

CLNet -29.16 -12.88 -15.60 -8.29 -11.15 -5.56 -8.95 -3.49 -6.34 -2.19

CSIFormer / / / / / / -9.32 -3.51 -6.85 -2.25

TransNet -32.38 -14.86 -22.91 -9.99 -15.00 -7.82 -10.49 -4.13 -6.08 -2.62

STNet -31.81* -12.91* -21.28* -8.53* -15.43 -5.72* -9.42* -3.51* -7.81 -2.46*

FLOPS and RUNTIME (in seconds)

Compression Ratio (γ) 1/4 1/8 1/16 1/32 1/64

Scenario FLOPS Runtime FLOPS Runtime FLOPS Runtime FLOPS Runtime FLOPS Runtime

CSINet 5.41M 0.0001 4.37M 0.0001 3.84M 0.0001 3.58M 0.0001 3.45M 0.0001

CRNet 5.12M 0.0003 4.07M 0.0003 3.55M 0.0003 3.28M 0.0003 3.16M 0.0003

CLNet 4.42M 0.0002 3.37M 0.0002 2.85M 0.0002 2.58M 0.0002 2.45M 0.0002

CSIFormer / - / - / - 5.41M - 5.54M -

TransNet 35.72M - 34.70M - 34.14M - 33.88M - 33.75M -

STNet 5.22M 0.0004 4.38M 0.0003 3.96M 0.0003 3.75M 0.0003 3.65M 0.0003

CSITransformer / / / / / 0.003 / 0.002 / /
/ indicates that the performance is not reported in the original paper

* indicates the second-best value in that column and - indicates that the code is not made public in order to generate the results

Along with this, a hybrid approach to channel reconstruction is

also introduced where we use a two stems approach (CNN and

Transformer) that improves the channel reconstruction quality.

We evaluated the performance and runtime of STNet along

with other models on the COST2100 dataset. Combining both

techniques, STNet produced the best performance per floating-

point operation among various other models.
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