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We consider a 2D model of an autophoretic particle in which the particle has a circular shape
and emits/absorbs a solute that diffuses and is advected by the suspending fluid. Beyond a certain
emission/absorption rate (characterized by a dimensionless Péclet number, Pe) the particle is known
to undergo a bifurcation from a non motile to a motile state, with different trajectories, going from
a straight to circular and to a chaotic motion by progressively increasing Pe. From the full model
involving solute diffusion and advection, we derive a reduced closed model which involves only
two time-dependent amplitudes C1(t) and C2(t) corresponding to the first two Fourier modes of
the solute concentration field. This model consists of two coupled nonlinear ordinary differential
equations for C1 and C2 and presents several great advantages:(i) the straight and circular motions
can be handled fully analytically, (ii) complex motions such as chaos can be analyzed numerically
very efficiently in comparison to the numerically expensive full model involving partial differential
equations, (iii) the reduced model has a universal form dictated only by symmetries, (iv) the model
can be extended to higher Fourier modes. The derivation method is exemplified for a 2D model,
for simplicity, but can easily be extended to 3D, not only for the presently selected phoretic model,
but also for any model in which chemical activity triggers locomotion. A typical example can be
found, for example, in the field of cell motility involving acto-myosin kinetics. This strategy offers
an interesting way to cope with swimmers on the basis of ordinary differential equations, allowing
for analytical tractability and efficient numerical treatment.
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I. INTRODUCTION

Phoretic particles (rigid particles or drops) have been attracting recently an increased interest theoretically, numer-
ically and experimentally [2, 5, 7–12, 14–17]. In its simplest version, the model consists of a particle that emits or
absorbs (with an emission/absorption rate A) a solute which diffuses, with bulk diffusion constant D, and is advected
by the suspending fluid. The interaction between the solute and the particle can be shown [11] to result in a tangential
flow along the particle, in the form of (in the frame moving with particle) u ∼ M∇sc, where u is the velocity, c the
solute concentration, ∇s is the gradient along the particle surface, and M is a mobility factor involving fluid viscosity
and the interaction potential between the solute and the particle. This problem can be characterized by a Péclet
number Pe = AMa/D2 where a is the particle radius. The solute c(r, t) (r is a position in space) and velocity u(r, t)
obey the advection-diffusion and the Stokes equations. It has been shown analytically, from a linear stability analysis,
both in 2D [7] and 3D [12] that if Pe < Pe1 (where Pe1 is a critical number), the particle undergoes a bifurcation
from a non-motile state (swimming velocity u0 = 0) into a motile state (u0 6= 0). A linear stability only informs us
on the instability onset from one state to another, but is not sufficient to describe how the velocity behaves with Pe,
where a nonlinear analysis is needed. Numerical simulations showed[7, 12] that the behavior of u0 is well represented
by u0 ∼ ±(Pe − Pe1)

1/2 in the vicinity of the bifurcation point; the solution u0 = 0 always exists, and is stable for
Pe < Pe1 and becomes unstable for Pe > Pe1, in favor of two stable branches of solutions u0 ∼ ±(Pe − Pe1)

1/2.
This is a classical pitchfork bifurcation. Numerical simulations in 2D [7] also showed that by increasing Pe further
the straight moving solution becomes unstable in favor of various states (meandering, circular, and chaotic solutions).
Simulations in 3D under axisymmetric constraint (imposing to the particle to move along a line) also reported [15]on
chaotic solutions (the particle goes back and forth in a chaotic manner). Relaxing the axisymmetric constraint in 3D
also revealed, among other motion, meandering, and chaotic motion in the form of persistent random walk [6]. The
transition from a non motile to a motile state, as well as irregular motion (apparently chaotic) has also been reported
experimentally[5, 8–10], and in some numerical simulations [2]. The transition from a non motile to a motile state
also takes place in the presence of a Marangoni stress [8, 15]. In a completely different context, that of cell motility
driven by acto-myosin rich dynamics (transition from a motile to a non motile state, Hopf bifurcation...) have also
been reported when the activity of cell (represented by myosin contractility) exceeds a certain critical value [1, 3, 4].

The above non trivial behaviors have been obtained in most cases by numerical simulations of model equations
involving diffusion, and advection with a moving boundary. It is thus highly desirable to see wether or not these
features can be translated into a more universal language. One way is to seek for a reductive perturbative scheme
that allows to extract from the full model prototypical simplified equations which are universal (in the sense that their
form does not depend on the considered swimmer model). This is the main goal of this paper. Our main objective
here is, by starting from the above described phoretic model, to extract, by following a nonlinear perturbative scheme,
two coupled (weakly nonlinear) equations for two complex amplitudes of the first two Fourier modes, which depend
only on time, while the spatial dependence can be handled analytically. These equations will enable us to find, besides
the first (primary) bifurcation (transition from a motile to a nonmotile state) a secondary bifurcation in the form of
a circular trajectory. We will also exemplify its power in capturing irregular motion. We will exemplify the method
for a 2D model (for simplicity), but the technique should work perfectly well in 3D, not only for the phoretic model,
but also for any model where locomotion is assisted by chemical activity.

II. PROBLEM FORMULATION

Our starting point is a simple phoretic model in 2D. We first recall the problem formulation[11, 12]. We consider
a concentration field c(r, t) subject to an advection-diffusion equation

∂tc(r, t) = D∇2c(r, t)−∇ · [c(r, t)u(r, t)], (1)

where the advection velocity field u(r, t) in the co-moving frame is obtained by solving the Stokes equations in the
fluid outside the particle. Here t is the time, r is the 2D position vector, measured relative to the particle center,
and D is the diffusion coefficient. We use polar coordinates (r, φ), centered at the particle position in the following
derivation. The boundary conditions for the concentration field read

∂rc(r, t)|r=a = −A/D, c(r, t)|r=R = 0, (2)

where a is the particle size and R is the system size. The flow velocity satisfies the following boundary conditions:

u(r, t)|r=∞ = −u0(t), u(r, t)|r=a =
M

a
∇

sc(r, t)|r=a, (3)
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where u0(t) is the swimming speed of the particle, ∇s is the surface gradient operator, andM is the particle mobility.
The system is closed by requiring the net force acting on the particle to be zero, which allows one to compute the
swimming velocity u0(t). It is conventional to express the fluid velocity in terms of the stream function ψ

ur(r, t) =
∂φψ(r, t)

r
, uφ(r, t) = −∂rψ(r, t). (4)

The stream function is related to the concentration distribution along the particle boundary by the boundary condition
(3), as explained below.
Hereafter, we use a non-dimensional form of the problem, in which the size of the particle a, the diffusion coefficient

D, and the release rate A are all set to 1. The remaining two non-dimensional numbers are Pe = AMa/D2 and
system size R/a. We will keep notation R for this dimensionless quantity.

III. EXPANSION IN FOURIER HARMONICS

Following the previous works [7, 12], the concentration field and the stream function are expanded in Fourier
harmonics of the polar angle φ.

c(r, t) =

∞∑

l=−∞

cl(r, t)e
ilφ, ψ(r, t) =

∞∑

l=−∞

ψl(r, t)e
ilφ, (5)

where we have cl(r) = c−l(r)
∗ and ψl(r) = ψ−l(r)

∗ as requirement for c and ψ to be real. The Stokes equations and
the boundary condition (3) allow one to express the amplitudes ψl as

ψl(r) =
ilPe(1− r2)

2r|l|
cl(1). (6)

Exploiting the force-free condition on the particle, the swimming velocity is obtained as [7] vx = −Peℜc1(1), vy =
Peℑc1(1).
The advection-diffusion equation (1) is expanded in Fourier harmonics as

∂tcl(r) = D̂lcl(r)− [∇ · (c(r)u(r))]l, (7)

where D̂l is the diffusion operator applied to the l-th Fourier harmonic:

D̂l =
1

r
∂r(r∂r)−

l2

r2
(8)

and [∇ · (c(r)u(r))]l is the l-th Fourier harmonic of the advection term.

IV. STATIONARY STATE AND LINEAR APPROXIMATION

The linear stability of the isotropic solution was already analyzed in previous works in 3D [12] and in 2D [7].
Nevertheless, we present it briefly as the first step of the solution of the non-linear problem. The isotropic solution
corresponds to

c0(r) = − ln
r

R
(9)

Substituting eq. (5) with c0(r) given by eq. (9) into eq. (7) and neglecting terms non-linear in cl, yields the following
evolution equation for cl

∂tcl(r) = L̂l(Pe)cl(r) = D̂lcl(r) + Peul(r)cl(1), (10)

where L̂l is the linear stability operator for the l-th harmonic. Here Peule
ilφ is the advection of the unperturbed

solution (9) with velocity field driven by the surface concentration cl(1)e
ilφ:

ul(r) =
l2(r2 − 1)

2rl+2
. (11)



4

The linear stability of the isotropic solution is governed by the eigenvalues λl,k of the operators L̂l, defined as

L̂lfl,k(r) = λl,kfl,k(r), (12)

where fl,k are the corresponding proper functions. The subscript l is associated with the φ variable and k with the r
one. We index the eigenvalues for given l in descending order with respect to their real part, starting with λl,0 ≡ λl,
which corresponds to the most unstable mode. It is essential for our analysis to assume the eigenvalue spectrum to be
discrete, which is the case for a finite domain. In general, neither the eigenvalues nor the proper functions of L̂l have
an elementary expression. However, it is known that for each l ≥ 1, there is exactly one critical Peclet number Pel
such that the operator L̂l(Pel) has an eigenvalue equal to zero[7, 11]. Both Pel (i.e. Pe1 and Pe2) as a function of

R and the proper function of L̂l(Pel) corresponding to the zero eigenvalue have an explicit expression in elementary
functions, given below.

For low enough Pe, the eigenvalues of L̂l are close to those of the diffusion operator D̂l and are thus all negative.
The isotropic solution is stable in this case (growth rate of all modes is negative for all l). As Pe increases, one
of the proper values for given l (λl,0 ≡ λl) becomes equal to zero at Pe = Pel and positive for Pe > Pel. The
corresponding proper function fl,0(r) ≡ fl(r) defines the perturbation mode that becomes unstable at Pe = Pel. The
linear stability analysis allows us to determine the angular dependence (given by l corresponding to the lowest Pel)
and the radial dependence (given by fl(r)) of the solution in the anisotropic phase. Further analysis is performed by
higher-order perturbation expansion in order to compute the swimming speed and the angular velocity of the particle
in the anisotropic phase, as explained below.

Here we exclude the possibility of transition to an anisotropic concentration distribution by a Hopf bifurcation. Since
the operators L̂l are not self-adjoint, their proper values can be complex. It is therefore possible for the isotropic
solution to become unstable due to one of the complex eigenvalues seeing its real part to become positive. We exclude
this possibility based on the results of full numerical simulations, shown below.

V. WEAKLY NON-LINEAR EXPANSION

This section presents the derivation of the weakly non-linear equations governing the particle dynamics. We
consider the situation where both the first and the second harmonic are close to the instability, or, equivalently, Pe
is simultaneously close to Pe1 and Pe2. This allows one to keep only thee first two leading harmonics. But It will
appear that extension to other higher harmonics is straightforward, albeit we restrict ourselves here to keeping only
the two first harmonics. This is made possible by choosing an appropriate size of the system R. We find that Pe1
becomes equal to Pe2 at R = Rc, where Rc = 3.17493. We thus have to assume that R = Rc + O(ǫ), but also
R > Rc, the second condition guaranteeing Pe1 < Pe2. Here ǫ is the small parameter with respect to which the
perturbation expansion is made. With these assumptions, c = c0(r) is the only possible solution for Pe < Pe1. This
solution becomes unstable at Pe = Pe1 and a straight motion is expected to emerge at this point. At some value of
Pe between Pe1 and Pe2, the straight motion is expected to become unstable in favor of a circular motion[7]. We
have been able to compute the O(ǫ2) terms analytically for an arbitrary value of R and also all O(ǫ3) terms for a
given numerical value of R. This is sufficient to reproduce quantitatively the straight and circular motions, as shown
below. Our reduced model accounts also for irregular motions, reported in[7].

A. General strategy

The goal of this derivation is to reduce the full dynamics of the autophoretic particle to a simplified system of
ordinary differential equations for two complex variables, C1 and C2, where C1 is the amplitude of the first harmonic
and C2 is the amplitude of the second harmonic in the concentration field. The main challenge is that in general, each
Fourier harmonic cl of the concentration field is a function of the distance from the center of the particle r. There is
thus no straightforward way to represent the whole function cl by a single scalar variable. We overcome this problem
by decomposing the functions c1(r) and c2(r) as

cl(r, t) = Cl(t)fl(r) + δcl(r, t) l ∈ {1, 2}, (13)

where Cl(t) is the complex amplitude, fl(r) is the proper function such that L̂l(Pel)fl(r) = 0, and δcl(r, t) is a

projection of the function cl(r, t) on the space of all other proper functions of the operator L̂l(Pel):

δcl(r, t) =
∑

k>0

Cl,k(t)fl,k(r). (14)
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The decomposition (13) is made using the proper functions of L̂l(Pel) even for Pe 6= Pel. This is to capitalize on

the explicit expression for Pel and fl for L̂l(Pel). The difference between the linear stability operator L̂l(Pe) and

L̂l(Pel) is of order O(ǫ) and is duly accounted for as a higher-order correction during the derivation.
The eigenvalues corresponding to the functions fl,k with k > 0 all have negative real parts. Therefore, the relaxation

time scale of the amplitudes Cl,k(t) is defined by the absolute values of λl,k. Since the set of λl,k is discrete and we have
assumed λl,k to be ordered decreasingly, the longest relaxation time scale is defined by |λl,1|. The relaxation time of
the fl(r) mode scales as 1/|Pe−Pel| for Pe close to Pel, which determines the main time scale of the dynamics close
to the critical point. We thus have been able to reexpress the functions δcl(r, t) as a non-linear function of C1 and C2,
with r-dependent coefficients. This is done by adiabatic elimination, as explained below. Since the eigenvalues and
the proper functions of the operator L̂l(Pel) do not have an elementary expression, the following procedure relies on
the adiabatic elimination of the amplitude δcl(r, t) as a function, instead of eliminating each amplitude Cl,k separately.
A similar strategy is employed to compute the r dependence of the amplitude of the other Fourier harmonics

cl(r, t) for l 6∈ {1, 2} as a function of C1 and C2, as also explained below. This effectively shows that the whole
concentration field c(r, φ, t) can be reexpressed as a perturbation expansion in powers of C1 and C2 after an initial
transient relaxation. We present below a procedure to compute the coefficients of this expansion as explicit functions
of r and φ.

B. Perturbation expansion

The following derivation is based on the assumption of C1 and C2 being small. It is usual for a pitchfork bifurcation
to show the perturbation amplitude scaling as (Pe − Pe1)

1/2. Here, however, we have two coupled harmonics that
are close to instability, which results in scaling C1 = O(ǫ) and C2 = O(ǫ). The consistency of the evolution equations
requires us to admit the following assumptions: |Pe− Pe1| = O(ǫ), |Pe− Pe2| = O(ǫ), ∂tC1 = O(ǫ2), ∂tC2 = O(ǫ2),
δc1(r, t) = O(ǫ2), δc2(r, t) = O(ǫ2), ∂tδc1(r, t) = O(ǫ3), ∂tδc2(r, t) = O(ǫ3), δc0(r, t) = O(ǫ2), ∂tδc0(r, t) = O(ǫ3). For
l > 2, we have δcl(r, t) = O(ǫ⌈l/2⌉) and ∂tδcl(r, t) = O(ǫ⌈l/2⌉+1). The smallness of ∂t is due to the critical slowing
down at the bifurcation point.

C. Adiabatic elimination

The problem requires us to reduce the partial derivative equations for functions cl(r) to ordinary differential equa-
tions of two scalar amplitudes C1 and C2. This is performed by applying adiabatic elimination, as explained in this
Section.
First, we introduce the right proper function gl of the operator L̂l(Pel) such that the corresponding eigenvalue is

zero:

L̂+
l (Pel)gl(r) = 0, (15)

where L̂l(Pel)
+ is the adjoint operator. The adjoint operator is defined with respect to the inner product

〈f, g〉 =

R∫

1

f(r)g(r)∗rdr, (16)

which is chosen to maintain the self-adjoint property of the diffusion operators D̂l subject to the boundary conditions
of the functions cl(r). The projection condition then reduces to

〈gl, δcl〉 = 0. (17)

The concentration evolution is split as

∂tcl(r, t) = ∂tClfl(r) + ∂tδcl(r, t) for l ∈ {1, 2} (18)

by the definition (13). We use gl to isolate the Cl expression from ∂tcl(r, t):

∂tCl(t) =
〈gl, ∂tcl(r, t)〉

〈gl, fl〉
, (19)
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where ∂tc(r, t) is computed according to eq. (7).
Equation (7) for l ∈ {1, 2} can be rewritten as

∂tcl(r, t) =L̂l(Pel)cl(r, t) + (Pe− Pel)ul(r)cl(1)− [∇ · (c(r)u(r))]l − Peul(r)cl(1)

=L̂l(Pel) δcl(r, t)
︸ ︷︷ ︸

O(ǫ2)

+(Pe− Pel)
︸ ︷︷ ︸

O(ǫ)

ul(r) cl(1)
︸︷︷︸

O(ǫ)

−[∇ · (c(r)u(r))]l − Peul(r)cl(1)
︸ ︷︷ ︸

O(ǫ2)

, (20)

where the last term is O(ǫ2) because Peul(r)cl(1) represents the O(ǫ) part of [∇ · (c(r)u(r))]l, as defined in the
linearization procedure. Combining eqs. (18) and (20), we obtain

fl(r)∂tCl(t) = L̂l(Pel)δcl(r, t) + ql(r, t) for l ∈ {1, 2}, (21)

where

ql(r, t) = (Pe− Pel)ul(r)cl(1)− [∇ · (c(r)u(r))]l − Peul(r)cl(1)− ∂tδcl(r, t) for l ∈ {1, 2}. (22)

Equation (21) is the main equation of the derivation, which we have solved together with the orthogonality condition
(17) to express both ∂tCl and δc(r, t) as a function of ql. The definition of ql in (22) includes the time derivative of
δcl(r). This is not a problem for the subsequent derivation because ∂tδcl(r) = O(ǫ3) and therefore this contribution
can be neglected to compute the O(ǫ2) terms of δcl(r, t). The present work only uses the O(ǫ2) terms of δcl(r, t) but
the proposed method is general enough to compute the higher-order terms as well. Indeed, once the O(ǫ2) terms of
δcl(r, t) are obtained as a function of C1 and C2 with coefficients that depend on r, the dependence of δcl(r, t) on
time is contained only in C1(t) and C2(t). It is thus possible to express the O(ǫ3) terms in ∂tδcl(r) as a function of
C1, C2, and their time derivatives. Those time derivatives can be further reexpressed through C1 and C2 by using
the final evolution equations.

The remaining step is to solve the equation (21). The expression of ∂tCl is given by eq. (19). The main challenge

is to extract the quasi-static amplitudes δcl(r, t). Since we have no explicit proper functions for L̂l(Pel), finding its

inverse is far from trivial. Here the situation is even more complicated because the operator L̂l(Pel) is not invertible
in the first place.

Luckily, here the operator L̂l(Pel) can be written as

L̂l(Pel) = D̂l + ul ⊗ vl, (23)

where vl is a distribution defined by the relation 〈f ,vl〉 = Pelf(1) (aka Dirac delta function). It is classically known
that it is possible to invert explicitly the operators of form (23), provided the inverse operator for Dl is known:

(D̂l + ul ⊗ vl)
−1 = D̂−1

l −
(D̂−1

l ul)⊗ (vlD̂
−1
l )

1 + 〈vl, D̂
−1
l ul〉

(24)

This is the case for our study as the inverse of the diffusion operator can be represented in an integral form with a
simple kernel, as shown in Appendix A. The remaining difficulty is the lack of a well-defined inverse for the operator
L̂l(Pel), which we overcome, as explained in Appendix B. The resulting solution of eq. (21) reads:

δcl = −D̂−1
l ql +

〈vl, D̂
−1
l ql〉

〈vl, D̂
−1
l fl〉

D̂−1
l fl + plfl, (25)

where the coefficient pl is chosen to satisfy eq. (17):

pl =
〈vl, D

−2ql〉〈vl, D
−1
l fl〉 − 〈vl, D

−1
l ql〉〈vl, D

−2
l fl〉

〈vl, D
−1
l fl〉2

(26)

Note that we have used here that fl = D−1
l ul and gl = D−1vl, as shown in the Appendix B.

The functions δcl(r, t) for l ∈ {1, 2} satisfy equation (20), which can be solved according to eqs. (25) and (26). The
remaining functions δcl(r, t) for l 6∈ {1, 2} satisfy similar equations

0 = L̂l(Pe)δcl(r, t) + ql(r, t) for l 6∈ {1, 2}, (27)

where the function ql is given by

ql(r, t) = −[∇ · (c(r)u(r))]l − Peul(r)cl(1)− ∂tδcl(r, t) for l 6∈ {1, 2}. (28)
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Since the kernel Ll(Pel) is not singular for l 6∈ {1, 2} and Pe close to Pe1 and Pe2, eq. (24) is used to compute the
functions δcl(r, t) as the solutions of eq. (27) for all l 6∈ {1, 2}.

This completes the proof that the full partial differential equations governing the evolution of the concentration
field c(r, t) can be reduced to a system of two differential equations for C1 and C2. The practical implementation of
the derivation procedure and the explicit expressions for some intermediate results and the final equations are given
in the next Section.

VI. THE DERIVATION PROCEDURE

We use an iterative procedure obtaining the expansions of ∂tC1, ∂tC2, and δcl one order of ǫ at a time. The first
step is to neglect the O(ǫ2) terms in c(r, φ), which allows us to compute the O(ǫ2) terms in ∂tC1, ∂tC2, and δcl. We
then substitute the obtained expressions of δcl into c(r, φ), keeping the terms up to O(ǫ2) order this time, which is
sufficient to obtain the order of O(ǫ3) terms in ∂tC1, ∂tC2, and δcl. This procedure is continued ad infinitum but we
stop at computing the O(ǫ3) terms of ∂tC1 and ∂tC2, which is sufficient for our purposes.

According to the eq. (13) and the order of magnitude analysis (see section VB), the concentration field can be
written as

c(r, φ, t) =c0(r) +
[(
C1e

iφ + C∗
1e

−iφ
)
f1(r) +

(
C2e

2iφ + C∗
2e

−2iφ
)
f2(r)

]
+

[

δc0(r) +

4∑

l=1

(
δcl(r)e

ilφ + δcl(r)
∗e−ilφ

)

]

+O(ǫ3)
(29)

where C1 and C2 are time-dependent complex amplitudes of the two modes that are close to instability and δck(r)
are functions of r with coefficients that depend on C1, C2, R, and Pe.
Each iteration consists in the following steps:

1. The concentration field (29) defines the stream function according to eq. (6), from which the fluid velocity field
is calculated.

2. Knowing the velocity field and the concentration, the advection term ∇ · (c(r)u(r)) is computed.

3. The advection term is then decomposed into Fourier harmonics which yields the amplitudes [∇ · (c(r)u(r))]l.

4. These amplitudes are then used to compute the ql terms according to eqs. (22) and (28).

5. ∂tC1 and ∂tC2 are computed at a given order according to eqs. (19).

6. The quasi-static values of δcl are computed according to eqs. (25) and (26) for l ∈ {1, 2} and according to eq.
(24) for l ∈ {1, 2}.

The last step can be omitted for the final iteration.

VII. EVOLUTION EQUATIONS FOR C1(t) AND C2(t) TO LEADING ORDER

We first start with the derivation to order ǫ2. The starting point is to use (21). Multiplying this equation by gl
and integrating both sides according to the scalar product (16) we obtain

∂tCl(t) =
〈gl, ql〉

〈gl, fl〉
, (30)

where we have used 〈gl, L̂lδcl〉 = 〈L̂+
l gl(r), δcl〉 = 0, by virtue of (15). Since ∂tδcl(r, t) = O(ǫ3), this term in ql (Eq.

(22)) does not enter to order ǫ2. The next step is to insert (29) into ql (Eq. (22)) and report the resulting expression
into (30). Note that δcl in (29) does not enter to this order neither since it produces O(ǫ3) contribution to (30) (see
also (21) for orders in ǫ). We are thus left, on the right hand side of (30), with scalar products involving fl and gl
(and ul, which is a known function, see (11) ) with prefactors containing linear and quadratic terms of Cl(t)

′s. The
inner product calculation requires, in principle, the knowledge of fl and gl.

The linear stability of the solution (9) is governed by the eigenvalues of the linear operators L̂l in eq. (10). The
critical Peclet numbers are

Pe1 = −
2
(
R2 + 1

)

R2 − (R2 + 1) ln (R)− 1
(31)
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Pe2 = −
R4 + 1

−R4

4 +R2 − ln (R)− 3
4

(32)

and the corresponding proper functions are

f1(r) =
R2 − r2

2r (R2 + 1)
+

(
r2 + 1

)
ln
(
r
R

)

4r
(33)

f2(r) =

(
−R2 + r2

) (

2R2 − 2
(

R2

r2 + 1
)

ln (R)− 1− R2+2
r2

)

4R4 + 4
+

ln
(
r
R

)

2r2
. (34)

Here we have computed fl as D
−1
l ul and Pel is obtained from condition 〈vl, D

−1ul〉 = 1, as shown in Appendix B.
It turns out we do not need the explicit expression of gl. Indeed, noting that because gl = D−1vl (see Appendix B),
any inner product in the form 〈gl, H(r)〉 can be written as

〈gl, H(r)〉 = 〈D̂−1
l vl, H(r)〉 = 〈vl, D̂

−1
l H(r)〉 = Pel[D̂

−1
l H(r)]r=1 (35)

Recall that D̂l is self adjoint and so is its inverse. The calculation of D̂−1
l is performed in Appendix A. We are now

in a position to calculate the inner product in (30). Consider the case l = 1, and collect the linear term in c1 in (22),
which is given by (Pe − Pe1)u1c1(1) = (Pe − Pe1)C1(t)u1(r)f1(1) (where u1(r) is given by given by (11)). Using
(30), we obtain from the right hand side

(Pe− Pe1)C1(t)f1(1)
〈g1(r), u1(r)〉

〈g1(r), f1(r)〉
= (Pe− Pe1)C1(t)f1(1)

[D̂−1
1 u(r)]r=1

[D̂−1
1 f1(r)]r=1

(36)

where we have used (35). In Appendix A wee show how to calculate D−1
1 , and the above expression can easily be

evaluated as a function of R. Reporting this into (30) yields the C1(t) equation to linear order. The next term from
ql is quadratic in cl and comes from the combination of second (advection term) and third terms in (22). It reads,
after using the expressions of ur and uθ (see (4), where ψl is given by (6))

∑

m 6=1

mcm(1, t)Pe

2r|m|+1

[

(r2 − 1)m
∂c1−m(r, t)

∂r
+ (m− 1)(2r2 + (1− r2)|m|)c1−m(r, t)

]

(37)

By using cl(r, t) = Cl(t)fl(r), and retaining only first and second harmonics, it is easy to see that the result reads as
C∗

1C2h(r), where h(r) is a function of r only (it is a combination of f1 and f2 and their derivatives with respect to
r). Once this expression is injected into (30) on the right hand side we obtain

C1(t)
∗C2(t)

〈g1(r), h(r)〉

〈g1(r), f1(r)〉
= C1(t)

∗C2(t)
[D̂−1

1 h(r)]r=1

[D̂−1
1 f1(r)]r=1

(38)

The last term can easily be obtained as algebraic rational functions of R and lnR (see Appendix B). The same
reasoning can be made for the equation of C2. The nonlinear term is found to be proportional to C1(t)

2. Collecting
linear and nonlinear terms in C1 and C2, the resulting system of equations to the second order is found to be given
by

Ċ1 = σ1C1 + α1C2C
∗
1 +O(ǫ3), (39a)

Ċ2 = σ2C2 + α2C
2
1 +O(ǫ3), (39b)

where different coefficients are functions of R and are listed in Appendix C.

VIII. EQUATIONS FOR C1 AND C2 TO NEXT ORDER

The next order terms turn out to be essential for nonlinear saturation. We need thus to extend the derivation to
O(ǫ3). We use (29) and insert it into (30). Taking into account δcl in (29) will lead to higher order terms. δcl is
given by (25) and (26) for l ∈ {1, 2} and by (24) for l 6∈ {1, 2}. Inserting these solutions into (29) allows us, by using
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(30), to obtain the desired terms. The cubic terms are of the form |C2|
2C1 for the equation of C1 and |C1|

2C2 for the
equation of C2. There is also a contribution of δcl in the form of ∂tδcl in definition of ql. Since the time derivative is
small (critical slowing down), the quadratic contribution arising from δcl are sufficient. For example the equation for
C1 yields terms in the form ∂t(C

∗
1C2) = C∗

1∂tC2 + C2∂tC
∗
1 . Using (39) we can express these terms as quadratic and

cubic terms. The final set of equation takes the form

Ċ1 = σ1C1 + α1C2C
∗
1 − β1|C2|

2C1 − γ1|C1|
2C1, (40a)

Ċ2 = σ2C2 + α2C
2
1 − β2|C1|

2C2 − γ2|C2|
2C2, (40b)

The coefficients of the cubic terms have expressions in R which become too involved. For this reason, we have
resorted to computing them for a given numerical value of R, becoming just real numbers. In Appendix C we plot
these coefficients as functions of R.

IX. COMPARISON BETWEEN THE FULL MODEL AND THE REDUCED ONE

Here we would like to confront the reduced model (40) with the full model (as described in Section II). The full
model is solved using finite difference discretization. The reduced model (40) is a set of ordinary differential equations,
the numerical solution of which is straightforward. The results of the comparison are shown in Fig. 1 for the steady-
state values of the swimming speed and the angular velocity of the particle (a nonzero value of the angular velocity
corresponds to a circular trajectory). As can be seen, the reduced C1 and C2 model is in quantitative agreement with
the full numerical simulation.
The solution of the C1 and C2 model shows that as the Péclet number is increased, the particle shows non-motile

solution as the stable fixed point for Pe < Pe1, straight motion (velocity is constant in time and finite, but angular
velocity is equal to zero) for Pe∗ > Pe > Pe1, and a circular trajectory (both the swimming speed and the angular
velocity remain fixed in time) for Pe∗∗ > Pe > Pe∗. No stable fixed point solution could be obtained for Pe > Pe∗∗.
Here we have Pe∗ ≈ 5.77 and Pe∗∗ ≈ 5.9. By increasing further Pe we find that the solution becomes irregular,
pointing to the occurrence of chaos (Fig.2 . This succession of transitions from one trajectory type to another
reproduces the prediction of the phenomenological theory. The circular trajectory and chaotic one have been also
obtained by numerical simulation in [7] using the full model. In a recent work [13] by taking the set of equations (40)
as a phenomenological model (extracted on the basis of symmetries, without reference to any given basic model) it
has been shown that it reproduces a variety of solutions going from straight, circular to chaotic trajectoriees. The
circular trajectory could even be obtained analytically from (40).

X. CONCLUSION

We have extracted from a phoretic model in 2D, including advection and diffusion, a reduced model in terms
of ordinary differential equations for the first two Fourier modes. This model captures, in a much less numerically
expensive manner, essential features encountered in the full model. The derivation has been performed for the two first
modes to cubic order. Extension to a higher number of modes can also be performed, as well as going to higher orders
than cubic terms. This will be essential if one wishes to have a wider applicability of the method. The derivation can
be extended to 3D without any additional conceptual complications. The method has been exemplified for a specific
phoretic model. However, the same technique can be used for any swimmer powered by one or many chemical fields.
Examples of great topicality are found in models of cell motility, involving acto-myosin kinetics inside the cell, outside
and on the cell membrane, cortex flow as well as flow in the suspending and internal fluids [1, 3, 4]. The present
theory constitutes a precious alternative to full numerical simulations. In addition, as the reduced model equations
have a form which depends only on symmetries, different active entities can be put together in a universal framework,
where different models can be described by the same reduced evolution equations (40), and their differences will be
encoded in the values of the numerical coefficients only.
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FIG. 1. Comparison between the analytical prediction and the direct numerical simulation of the particle velocity and angular
velocity in stationary, straight, and circular phases. The system size is set to R = 3.25. The solid curves are obtained by a
direct numerical solution of the C1, C2 equations. The symbols are the results of the full numerical simulations. In both cases
the steady-state values are obtained by running the simulations for a long time until (on the order of 105a2/D). The horizontal
axis is cut at Pe = 5.9 above which the absolute value of the velocity does not seem to reach a steady state.

FIG. 2. An irregular trajectory obtained from solution of (40) for Pe = 5.95.
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Appendix A: Inverting the diffusion operators

A solution to the equation

1

r

d

dr

(

r
dF

dr

)

− l2F = G(r) (A1)

can be written as

F (r) =

{
1
2l

[
r−l

∫ r
G(ρ)ρ1+ldρ− rl

∫ r
G(ρ)ρ1−ldρ

]
+A1r

l +A2r
−l for l > 0

ln r
∫ r
G(ρ)ρdρ−

∫ r
ρ ln ρG(ρ)dρ+A1 +A2 ln r for l = 0

, (A2)

where the constants A1 and A2 are calculated by imposing the boundary conditions

∂rF (1) = 0 F (R) = 0. (A3)

The problem considered here requires solving eq. (A1) with functions G(r) written as a combination of integer powers
of r and ln r. This allows us to calculate the integrals in (A2) analytically.

Appendix B: Inverting the advection-diffusion operator

Suppose we have a system of equations

µf = (M + u⊗ v).x+ y

〈g,x〉 = 0,
(B1)

where µ is a number, M is a matrix, u, v, x, y, f , g are vectors, and

(M + u⊗ v).f = 0,

g.(M + u⊗ v) = 0.
(B2)

The first equation (B1) corresponds to eq.(21) where µ represents ∂tCl, M + u ⊗ v is the linear operator L̂(Pel)
(see eq; 23), x represents δcl and y represents ql. The second equation represents the orthogonality condition (17).

Equation (B2) represents the eigenvalue problem L̂(Pel)fl(r) = 0 and its adjoint (15).
The goal of this Section is to find the solution of the system (B1) representing x and µ as a function of M−1, u,

v, and y. First, we note the following relations:

f ∝M−1.u, g ∝ v.M−1, 〈v,M−1.u〉 = −1, (B3)

which we obtain from eqs. (B2). Multiplying the first equation in (B1) by M−1, we get

µM−2.u = [I + (M−1.u)⊗ v].x+M−1.y, (B4)

whence

x = µM−2.u− (M−1.u)〈v,x〉 −M−1.y, (B5)

Equation (B5) implies the following ansatz for x:

x = −M−1.y + pM−1.u+ qM−2.u, (B6)

where p and q are two numbers to be determined. It is then straightforward to substitute eq. (B6) into eq. (B5) to
get the values of µ and q as:

q = µ =
〈v,M−1.y〉

〈v,M−2.u〉
(B7)

The value of p is determined from the second equation of (B1). It is convenient that the solution (B7) use the vector
v only as part of 〈v, ·〉 which allows us to use its definition 〈f ,v〉 = Pef(1).



12

Appendix C: Coefficients of the reduced model

Here we list the coefficients of the linear and quadratic terms and plot those of the cubic term.

σ1 =
16(Pe− Pe1)

(
R2 ln (R)−R2 + ln (R) + 1

)2

3R6 + 8R4 ln (R)
2
− 40R4 ln (R) + 19R4 + 8R2 ln (R)

2
+ 4R2 ln (R)− 35R2 + 12 ln (R) + 13

. (C1)

α1 = −

2
(
R2 + 1

) (

20R10 ln (R)
2
− 40R10 ln (R) + 21R10 + 8R8 ln (R)

2
+ 48R8 ln (R)− 63R8

+16R6 ln (R)
3
− 48R6 ln (R)

2
+ 56R6 ln (R) + 46R6 + 32R4 ln (R)

3
− 56R4 ln (R)

2

−8R4 ln (R) + 6R4 + 16R2 ln (R)
3
− 20R2 ln (R)

2
− 48R2 ln (R)− 3R2 − 8 ln (R)− 7

)

R2
(
R4 + 1

) (
R2 ln (R)−R2 + ln (R) + 1

) (

3R6 + 8R4 ln (R)
2
− 40R4

ln (R) + 19R4 + 8R2 ln (R)
2
+ 4R2 ln (R)− 35R2 + 12 ln (R) + 13

)

(C2)

σ2 =
3(Pe− Pe2)

(
R4 − 4R2 + 4 ln (R) + 3

)2

12R8 ln (R)− 13R8 + 16R6 ln (R) + 8R6 + 12R4 ln (R) + 6R4 − 8R2 + 8 ln (R) + 7
(C3)

α2 =

3
(
R4 + 1

)2 (
R2 ln (R)−R2 + ln (R) + 1

) (
6R6 ln (R)− 7R6 + 6R4 ln (R)

+9R4 + 6R2 ln (R)− 9R2 + 6 ln (R) + 7
)

(
R2 + 1

)2 (
R4 − 4R2 + 4 ln (R) + 3

) (
12R8 ln (R)

−13R8 + 16R6 ln (R) + 8R6 + 12R4 ln (R) + 6R4 − 8R2 + 8 ln (R) + 7
)

(C4)

Appendix D: Explicit expression

Here we list the explicit epxressions for ∂tC1 and ∂tC2 forR = 3.25. We first have simplified the expressions assuming
Pe to be close to the critical Péclet number Pec = 5.9561, which is the critical Péclet number for R = Rc = 3.17493,
such that Pe1(Rc) = Pe2(Rc) = Pec. We then define ∆P = Pe − Pec = O(ǫ) and truncate all expressions keeping
only terms of order O(ǫ3) or higher.

∂tC1 = C1

(
0.0484 + 0.1799∆Pe− 0.00244∆Pe2

)
− C∗

1C2 (1.227 + 0.2467∆Pe)− (D1a)

0.2016C1|C1|
2 − 3.077C1|C2|

2 +O(ǫ4),

∂tC2 = C2

(
0.0411 + 0.3701∆Pe− 0.00123∆Pe2

)
+ C2

1 (0.5921 + 0.0905∆Pe)− (D1b)

3.1214|C1|
2C2 − 1.7893|C2|

2C2.
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