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Computational modeling of failure in quasi-brittle materials at various length scales is important. In this work we present a rate
independent cohesive zone model for modeling failure in quasi-brittle materials. The proposed model can simulate cracking, slipping,
and crushing of planes through a traction-separation law. A single surface hyperbolic failure criterion, which naturally comes as
a direct extension of Coulomb friction criterion with cut-off in tension and cap-off in compression, has been developed. A Euler
backward integration scheme together with a global-local Newton solver compatible with a substepping strategy has been used in
numerical computations. The proposed model is then used for modeling of shear wall panels. The numerical results obtained are
validated by comparing them with experimental results available in literatures.
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1. Introduction

Computational modeling of failure in materials and structures
has been of interest in the scientific community. The progress
has been towards use of concepts from fracture and damage
mechanics together with computational tools like finite ele-
ment, extended finite element, and or mesh free methods for
modeling failure. The introductory works on Cohesive Zone
Models (CZM) is attributed to [1] and [2]. These are often as-
sociated with interface elements for the purpose of modeling
crack propagation in various materials, such as metals, poly-
mers, ceramics, and geomaterials. A CZM is characterized by
a traction separation law analogous to material constitutive
law for a continuum material. This allows to have a fracture
process zone ahead of the crack tip defined by two imaginary
surfaces and the bulk that localizes the physical fracture. Mate-
rial outside this zone remains pristine. Once the tractive forces
across the two surfaces exceed a certain limit as defined by the
traction separation law, the two surfaces start to open and the
crack initiates. A zero thickness interface element is used to
implement the CZM into a finite element scheme. A compre-
hensive overview of the different interface elements and their
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finite element formulation is provided in [3]. Thus, CZM is
an explicit expression for fracture state in materials. It repre-
sents the relationship of force and displacement. A numeric
approach is provided by this model to simulate the behavior
of fracture within the crack area.

The quasi-brittle materials have a progressive internal mi-
cro crack, even prior to loading the material. Such mechanical
behavior is commonly attributed to the heterogeneity of the
material, due to the presence of different phases and mate-
rial defects, like flaws and voids. Initially, these micro cracks
are stable, which means that they grow only when the load is
increased. Around the peak load an acceleration of crack for-
mation takes place and the formation of macro cracks starts.
The macro cracks are unstable, which means that the load has
to decrease in order to avoid an uncontrolled growth. Thus, de-
formation controlled test of such quasi-brittle material results
in softening and localization of cracking in a small zone.

Many cohesive models have been formulated and developed
in terms of traction separation laws, and are popular for mod-
eling discontinuities in solid mechanics [4]. Cohesive models
were originally introduced in the late 1970s to represent rock
joints or interfaces in geotechnical models of discontinuous
rock masses [5, 6]. Later they were used for fracture analysis
of quasi-brittle materials. Hillerborg et al. [7] formulated a
fictitious crack cohesive model, with one-dimensional format
of tensile de-bonding. It is capable of capturing the loss of
cohesion in the fracture process zone. These models were ini-
tially used to represent the progressive cracking along straight
crack paths in single notched specimens [8], and crack anal-
ysis along curvilinear paths in eccentrically notched 3-point
bending beams [9]. Later, they were extended to the analysis
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of multiple crack paths in meso-mechanical studies of con-
crete or rock materials [10]. The cohesive zone model was also
used for the calculation of stress tractions along bi-material
interfaces, which is a nontrivial task of extrapolating standard
Gauss point stresses in adjacent continuum elements, and the
representation of surface tractions along discrete cracks in fi-
nite element analysis of LEFM problems requiring systematic
re-meshing near the crack tip [11].

The cohesive zone model regard fracture as a gradual phe-
nomenon in which separation takes place across a cohesive
zone, and is resisted by cohesive tractions [12]. Thus, cohesive
zone elements do not represent any physical material, but de-
scribe the cohesive forces which occur when material elements
are being pulled apart. Therefore, cohesive zone elements are
placed between continuum (bulk) elements. Moreover, cohe-
sive zone models incorporate both strength and energy param-
eters. They provide a bridge between strength-based models
and energy-based models for cracking, slipping, and crushing
of material. Several constitutive models have been proposed
in the literature for various applications, and with different
levels of numerical sophistication.

For geo-mechanics, after the inception proposals in [5] and
[13], several plasticity-based cohesive zone models were formu-
lations, such as [14, 15], etc. For the failure modeling of com-
posite like masonry plasticity-based fracture models [16–21]
were proposed at micron level. For fracture simulations of
concrete elasticity-based cohesive zone models [22], damage-
based de-cohesion models [23, 24] and plasticity-based frac-
ture models [25–28] were proposed. Moreover, recent propos-
als include the rigid plastic simulations [29, 30].

In the present study, a cohesive zone model is formulated
in terms of traction separation laws, through plasticity con-
stitutive theory. The cohesive model consists of a single sur-
face hyperbolic yield criterion and comprehends three dif-
ferent failure mechanisms: first, tension cut-off for mode I
failure; second, the Coulomb friction model for mode II fail-
ure; third, cap for compression failure. Moreover, the model is
developed by integrating the differential equation by fully im-
plicit Backward Euler method. These equations are solved by
full Newton–Raphson technique in monolithic manner, which
lead to combined local/global approach and faster conver-
gence. A careful and detailed investigation has been made to
check robustness and accuracy of the algorithm for differ-
ent load path and nonassociativity. It has been found that sub
stepping is required to ensure convergence and accuracy of the
final solution at both local and global level. Thus, algorithm
is combined with a sub stepping strategy.

This article is structured as follows: After introduction and
a brief literature review of cohesive zone models, Section 2
describes the proposed cohesive zone model in terms of clas-
sical plasticity, which features fracture energy-based softening
of strength parameters. It also emphasizes on the requirement
of nonassociated formulation. Section 3 summarizes the algo-
rithmic aspect related to fully implicit integration of the con-
stitutive relations and the Newton–Raphson solution of the
local material and the global equilibrium problems, based on
a consistent tangent operator. In Section 4, the performance
of proposed cohesive zone model is evaluated by loading a
cohesive element in direct tension, direct compression, and

mixed mode conditions. In Section 5 the single step algorithm
is extended to include a sub-stepping strategy to enlarge the
range of convergence and improve the accuracy of calculating
the internal variables. Section 6 validates the model by numer-
ical modeling of unreinforced masonry shear wall. The shear
wall is considered because it shows all the failure mechanisms
of cracking, slipping and crushing. Finally, Appendix A sum-
marizes the basic expressions required for the model and the
entries for the consistent tangent operators, while Appendix B
presents algorithms of local Newton solvers with and without
sub-stepping.

2. Cohesive Zone Model

In this section, cohesive model is proposed for failure analysis
of quasi-brittle material, which includes potential crack, slip,
and crushing of planes. In the following section, a complete
description of proposed cohesive zone model is explained in
terms of classical plasticity theory.

2.1. Elastic Behavior

The 2D constitutive model for cohesive zone model is formu-
lated in terms of one normal and one tangential surface trac-
tion, � = {�nn, �tt}

T , and conjugate relative displacements,
� = {unn, utt}

T. The generalized relation can be written in stan-
dard form as:

� = K�, (1)

where nn and tt designate normal and tangential components.
Before cracking, slipping, and crushing, the model is assumed
to behave elastically, and it is also assumed that normal and
traction component are independent of each other. Thus, stiff-
ness can be expressed as:

K = diag{knn, ktt}
T. (2)

2.2. Plasticity-Based Cohesive Zone Model

A rate independent cohesive zone model, defined by hyper-
bolic function (Eq. 3) has been proposed, see Figure 1. The
proposed model is a simple extension of the Coulomb friction
criterion with cut-off in tension and cap-off in compression,
which results in a single surface yield criteria capable of repre-
senting pressure-dependent friction shear failure and cracking
by cut-off in-tension and crushing by cap-off in compression
under combined normal and tangential stresses. Moreover,
the proposed model overcomes the problem of singularity that
may occur in multi-surfaces yield criterion:

F(�, q) := −[(C − �nn tan(�))]2 fc(�, q) ft(�, q) + �2
tt, (3)

fc(�, q) :=
2

�
arctan

(

�nn − �

�c

)

, (4)

ft(�, q) :=
2

�
arctan

(

� − �nn

�t

)

, (5)
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Fig. 1. Trace of failure function F(�, q) and potential func-
tion Q(�, q); solid line represents the tension-cut, shear and
compression-cap region with one equation; straight dotted line
indicates the Coulomb friction criterion. Note: A transition point
from compression cap to Mohr-Coulomb friction criterion, de-
noted as �c.

where the vector q = q(C, Cq , �, � , �, � ) is a function of six
internal hardening parameters, which implicate the apparent
cohesion (C, CQ), friction angle (�), dilation angle (� ), ten-
sion strength (�), and compression strength (� ). In the yield
function, � denotes tension cut-off and � denotes compression
cap. The functions fc(�, q) and ft(�, q) are the compression
cap and tension cut-off functions, respectively. The function
fc(�, q) vanishes at the cap and the function ft(�, q) vanishes
at tension-cut. For all other stress-states both functions have
a value approximately equal to one. The parameters �c and
�t control the curvature of the compression cap and tension
cut-off at transition region.

Moreover, if ft and fc fixed to 1, the present single yield
surface criterion reduce to Mohr–Coulomb criterion. Addi-
tionally, if � = 0, it further reduces to the Tresca criterion.
On the other hand, if only � is fixed 0 then failure surface
of present yield criterion becomes rectangular with different
yield value for compression, tension and shear.

Generally, a nonassociated formulation is used to charac-
terize the frictional behavior of quasi-brittle material, such as
concrete, ceramics, etc., which exhibits the significant pressure-
sensitivity. The frictional material exhibits the phenomenon of
dilatancy due to irregularity of surface in sliding, which tends

to separate and open the two faces under relative tangential
displacements. It is widely accepted that the dilatancy dimin-
ishes with the increase in level of compression, and finally
disappears at very high levels of compression [31, 32]. In ad-
dition, the dilatancy decreases as sliding progresses [33, 34].
Therefore, due to different dependence of strength and dila-
tancy on normal stress leads to the requirement of a nonasso-
ciated formulation. The plastic potential is described in terms
of another hyperbolic function with different values of appar-
ent cohesion (CQ) and frictional angle (dilation angle (� )),
with the same tensile (�) and compressive strength (� ). The
expression of potential function reads:

Q(�, q) := −[CQ − �nn tan(� )]2 fc(�, q) ft(�, q) + �2
tt. (6)

2.3. Evolution Laws

Evolution laws for hardening or softening behavior for the
cohesive zone model is defined by the rate of plastic work
per unit volume. In the present study, the evolution of yield
surface has been assumed such that, during plastic loading in
tension-shear region, tensile strength (�) decreases exponen-
tially while friction angle (�) remains unchanged, and in the
compression-shear region both friction and tensile strength
degrade exponentially (Figure 2a). In addition, the compres-
sion strength changes when plastic loading path intersects
with the compression cap (Figure 2b). The above assump-
tions can be implemented by using four internal variables,

i.e., Ẇ
p

:= Ẇ
p
(ẇ

p
1 , ẇ

p
2 , ẇ

p
3 , ẇ

p
4 ), where ẇ

p
1 and ẇ

p
2 represent

degradation in tensile strength, ẇ
p
2 and ẇ

p
3 govern the fric-

tional strength degradation, and ẇ
p
4 gives change in the com-

pression strength (see figure):

ẇ
p
1 := 〈�nn〉u̇

p
nn, (7)

ẇ
p
2 := (�tt − �ttr1

sign(�tt))u̇
p
tt, (8)

ẇ
p
3 := (�ttr1

− �ttr2
)sign(�tt)u̇

p
tt, (9)

ẇ
p
4 := 〈〈�nn〉〉u̇

p
nn f or �nn < �c, (10)

where the symbol 〈〉 denotes for Macaulay bracket and
〈x〉 = (x + |x|)/2 and 〈〈x〉〉 = (x − |x|)/2. u̇

p
nn and u̇

p
tt is nor-

mal and tangential relative plastic displacements. �c denotes
the transition point from compression cap to Mohr–Coulomb

Fig. 2. Evolution of yield surfaces: (a) tension shear region; (b) compression region.
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friction envelope (see Figure 1, a point between red and green
line). �ttr1

is the tangential strength when tensile strength is
completely exhausted; �ttr2

is minimum tangential strength for
the final contracted yield surface, see Figure 2a. In tension-
shear region, �ttr1

and �ttr2
are assumed to be zero and in

compression-shear region they can be expressed as:

�2
ttr1

= −2Cr tan � fc ft, (11)

�2
ttr2

= −2Cr tan �r fc ft. (12)

The hardening parameter q can be related to the internal
variables as follows:

C := Cr + (C0 − Cr ) exp

−	C

(

w
p
1

G I
f

+
w

p
2

G I I
f

)

, (13)

CQ := CQr
+ (CQ0

− CQr
) exp

−	CQ

(

w
p
1

G I
f

+
w

p
2

G I I
f

)

, (14)

� := �r + (�0 − �r ) exp−	�w
p
3 , (15)

� := �r + (�0 − �r ) exp−	� w
p
3 , (16)

� := �0 exp

−	�

(

w
p
1

G I
f

+
w

p
2

G I I
f

)

, (17)

� =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�0 + (�p − �0)

√

(

2w
p

4

wp

)

−

(

w
p

4

wp

)2

if w
p

4 ≤ wp

�0 + (�p − �p)

(

w
p

4 − wp

wm − wp

)2

if wp ≤ w
p

4 ≤ wm,

�r + (�m − �r ) exp
	�

(

w
p

4 − wp

�m − �r

)

if w
p

4 > wm

(18)

where G I
f and G I I

f are the mode I and mode I I fracture
energy and 	i is a parameter that controls the softening of
the internal variable. The subscript 0 stands for initial value
and r for residual value whereas subscript p and m indicate
intermediate values. The preceding hardening equation can
be written in a compact form as follows:

Ẇ
p

= H�̇
p. (19)

2.4. Elasto-Plastic Tangent Operator

In accordance with the theory of plasticity, the relative dis-
placement can be decomposed into an elastic part and a plastic
part:

� = �
e + �

p, (20)

where �
e and �

p are the elastic displacement and plastic
or irreversible displacement respectively and the notion of

irreversibility of plastic flow can be introduced by nonassoci-
ated flow rule. It can be written in rate form as:

�̇
p = 
̇m, (21)

where 
̇ is the constant slip rate or plastic multiplier. The
plastic multiplier can be found by checking the consistency
condition (persistency condition) together with Kuhn–Tucker
condition (F ≤ 0, 
̇ ≥ 0, 
̇F = 0). The consistency condition
can be written as 
̇Ḟ = 0 for yield condition 
̇ > 0 and Ḟ = 0
and we can be written as:

Ḟ =
∂ F

∂�

�̇ +
∂ F

∂q
q̇ = 0, (22)


̇ =
nK�

nT Km + pT
�

, (23)

in which m := ∂ Q/∂�, n := ∂ F/∂�, p := ∂ Q/∂
, and � :=
(∂q/∂Wp)(∂Wp/∂�

p)(∂�
p/∂
) = (∂q/∂Wp)Hm. We can de-

fine hardening parameter in its rate form as q = 
̇�. Putting
the plastic multiplier (
̇) in the rate form of stress relationship
to get elasto-plastic tangent modulus Kep, i.e.,

�̇ = K(�̇ − 
̇m) = Kep
�̇, (24)

Kep = K −
Km⊗nK

nT Km + pT
�

. (25)

3. Algorithmic Aspect

In the present section, the cohesive zone model is implemented
into a finite element framework, which gives rise to a set of
nonlinear algebraic-differential equations, and they are inte-
grated by Backward Euler method. The Newton–Raphson
scheme is used to solve nonlinear system of equations, which
leads to combined local and global approach. Local solver
provides the new internal state variable for a given relative dis-
placement, subsequently global solver provides the solution
for the unbalanced force to accommodate stress distribution
within the finite load increments.

3.1. Elastic Predictor-Plastic Correct Strategy

The backward Euler method is a first-order (i.e., local trun-
cation error is O(h2) for a single step) method and is uncon-
ditionally stable. The integration procedure leads to a set of

Table 1. Elastic material property for the brick and joints

Brick Joint

E, Knn , Ktt,

N/mm2 � N/mm3 N/mm3

2000 0.15 1000 1000
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Table 2. Inelastic material property for the joints

Tension Shear Cap

�0, G I
f , C0 \ Cr , CQ0 \ CQr , �0 \ �r , � , G I I

f , �p,

N/mm2 Nmm/mm2 N/mm2 N/mm2 radian radian Nmm/mm2 N/mm2

2.0 5�2
0 /2Knn 1.4�0/0.1CQ 1.1�0/0.1CQ 0.65/0.50 0.30/0.20 10G I

f 30

algebraic-incremental equations, which can be split into a elas-
tic predictor, followed by plastic corrector if and only if the
trial stress-state violates the current yield condition.

The time discretization of an interval of interest as [0, T] =
⋃N

n=1[tn, tn+1]. The relevant problem can be seen with in time
interval [tn, tn+1]. It is assumed that the stress-state (�n, qn) at
current time t = tn should satisfy the equilibrium conditions
and be admissible. For prescribed increment in relative dis-
placement �̇, at the next time step tn+1 = tn + �t the relative
displacement is given by �n+1 = �n + ��, and this can be split
into two parts, i.e., �� = ��

e + ��
p. According to the elas-

tic predictor-plastic corrector strategy, the stress and internal
variables can be written in their incremental form as:

�n+1 = �n + K��
e = �n + K(�� − ��

p), (26)

�n+1 = �
tr ial
n+1 + �
n+1 Kmn+1, (27)

qn+1 = qn + �
n+1�n+1, (28)

F(�n+1, qn+1) = 0, (29)

where �
tr ial
n+1 = �n + K�� is the trial stress. The backward

Euler method gives rise to nonlinear system of equations,
which has to be solved to get actual stress state. In the
present study, full Newton–Raphson method is used to solve
nonlinear system of equations. It provides quadratic conver-
gence when the initial root is sufficiently close to the con-
verged solution, and also ensures the asymptotic quadratic
convergence at the global level for structural equilibrium.
Newton–Raphson strategy is used for the solution of non-

linear equation in monolithic format, as illustrated in [35–37]
for the J2 plasticity. The strategy is highly influenced by the
choice of the independent variables and sequence of the nu-
merical operations. It requires the determination of residual
for the set non-linear Eqs. (27), (28), and (29). It can be written
as:

r (�n+1, qn+1,�
n+1) =
⎧

⎪

⎨

⎪

⎩

�n+1 − �
tr ial
n+1 + �
n+1 Kmn+1 = 0

qn+1 − qn + �
n+1�n+1 = 0

F(�n+1, qn+1) = 0

. (30)

After linearizing the residual and then expanding it, we can
write:

r (� + ��, q + �q,�
 + �
) = r (�, q,�
)

+
r (�, q,�
)

∂(�, q, 
)

⎡

⎣

��

�q

�


⎤

⎦

+O(�2), (31)

where the truncation is performed after the first-order terms
(O(�2) ∼= 0) and r (�,q,�
)

∂(�,q,
)
is the gradient of residual with

respect to its variables, i.e., �, q, 
 commonly known as
Jacobian. The Jacobian for residual at time step n + 1 can be
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Fig. 3. Plot of verification example: (a) direct tension test; (b) direct compression test.
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Fig. 4. Plot of verification example under direct shear test under different compressive stress.

expressed as:

J(�n+1, qn+1,�
n+1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

I + �
K
∂m

∂�

�
K
∂m

∂q
Km

−�
K
∂�

∂�

−�
K
∂�

∂q
−�

∂ F

∂�

∂ F

∂q
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (32)

Fig. 5. Plot of the initial yield surface Fini tial ; plot of the yield
surface at trial stress Ftr ial ; plot of the shrunk or final yield surface
F f inal .

The actual solution is achieved by letting the residual go
to zero for that current time step during plastic loading. This
can be achieved by performing local iteration cycles. The itera-
tions will end when residual becomes smaller than a prescribed
tolerance value:

0 = r (�k
n+1, qk

n+1,�
k
n+1)

+J−1(�k
n+1, qk

n+1,�
k
n+1)

⎡

⎢

⎢

⎣

��
k+1
n+1

�qk+1
n+1

�
k+1
n+1

⎤

⎥

⎥

⎦

, (33)

⎡

⎢

⎢

⎣

��
k+1
n+1

�qk+1
n+1

�
k+1
n+1

⎤

⎥

⎥

⎦

= −J−1(�k
n+1, qk

n+1,�
k
n+1)

×r (�k
n+1, qk

n+1,�
k
n+1), (34)

Table 3. Convergence of algorithm without sub-stepping for different load path, at a Gauss point level

Tension-shear region

 = 0  = 15  = 30  = 45  = 60  = 75  = 90

N = 5 4 8 7 6 7 6 6
N = 25 5 16 14 12 14 8 8

N = 125 5 Fail 14 15 16 8 10
N = 625 6 Fail Fail Fail Fail Fail 12

Compression-shear region

 = 90  = 105  = 120  = 135  = 150  = 175  = 180
N = 5 6 6 8 8 11 25 E

N = 25 8 16 12 13 12 12 4
N = 125 10 20 13 Fail 13 12 7
N = 625 12 22 17 Fail 17 16 9
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Table 4. Convergence of algorithm with sub-stepping for different load path, at a Gauss point level

Tension-shear region

 = 0  = 15  = 30  = 45  = 60  = 75  = 90

N = 5 4 8 7 6 7 6 6
N = 25 5 16 14 12 14 8 8

N = 125 5 39(2) 14 15 16 8 10
N = 625 6 198(8) 113(8) 101(8) 117(8) 64(8) 12

Compression-shear region

 = 90  = 105  = 120  = 135  = 150  = 175  = 180

N = 5 6 6 8 8 11 25 E
N = 25 8 16 12 13 12 12 4

N = 125 10 20 13 97(8) 13 12 7
N = 625 12 22 17 481(40) 17 16 9

Fig. 6. Plot for error stress response along entire loading path: (a)
tension; (b) compression; (c) shear.

⎡

⎢

⎢

⎣

�
k+1
n+1

qk+1
n+1


k+1
n+1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

�
k
n+1

qk
n+1


k
n+1

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

��
k+1
n+1

�qk+1
n+1

�
k+1
n+1

⎤

⎥

⎥

⎦

. (35)

3.2. Consistent Tangent Operator

The converged solution form local Newton–Raphson iteration
can be used for the determination of consistent tangent opera-
tor ��

��
for the current time step. Thus, in order to compute the

tangent operator using the Jacobian, we have to differentiate
the residual with respect to the relative displacement and then
by using the chain rule, finally we will get:
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The consistent tangent operator can extracted from the pre-
ceding expression, and we can define the consistent tangent

Table 5. Convergence of algorithm without sub-stepping for
different dilatency for load step = 0.005, at a Gauss point level

p = 0 p = 0.1 p = 1 p = 10 p = 20 p = 22

� = 0 3 3 3 3 13 16
� = 15 7 7 7 8 24 16
� = 30 8 8 9 18 39 Fail
� = 45 10 10 11 Fail Fail Fail
� = 60 13 13 17 Fail Fail Fail
� = 75 41 67 83 Fail Fail Fail
� = 90 Fail Fail Fail Fail Fail Fail
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Table 6. Convergence of algorithm without sub-stepping for
different dilatency for load step = 0.00001, at a Gauss point
level

p = 0 p = 0.1 p = 1 p = 10 p = 20 p = 22

� = 0 2 2 2 3 3 15
� = 15 2 2 2 3 3 15
� = 30 2 2 2 3 4 16
� = 45 2 2 3 3 4 16
� = 60 3 3 3 3 4 16
� = 75 4 4 4 6 6 25
� = 90 4 4 9 11 17 27

operator as:
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4. Verification of Cohesive Zone Model at the
Constitutive Level

The formulated constitutive model for the cohesive zone is
verified by implementing a single zero-thickness interface el-
ement, which is a 4-node 2D cohesive element with two in-
tegration points. The verification examples include interface
in tension, compression, and shear mode condition. The im-
plementation is done in ABAQUS [38], by using the user
defined subroutine UMAT, which allows the definition of a
user defined mechanical constitutive model for a material.
The material parameters used for verification are tabulated in
Tables 1 and 2, while the missing parameters are obtained in-
directly from the calibration process. Specifically, to find the
values of mode I and mode II fracture energy, it is assumed
that G I

f = 5G I
f min and G I I

f = 10G I
f , where G I

f min = �2
0 /2knn

corresponding to the perfectly brittle tensile fracture.
The model is verified by using basic numerical example,

i.e., tension, compression, and shear. It can be observed from
Figures 3a and 3b, that the internal hardening variable coin-
cides well with the analytical values obtained from Eqs. (17)
and (18). Figure 4a shows distribution of tangential stress with
relative tangential displacement plotted for different compres-

sive stress (0.1, 1, 10 Mpa). A shear softening behavior is
observed. The result shows that the shear capacity of the in-
terface increases with an increase in compressive stress. After
the initial elastic response, all response curves show a similar
post-peak behavior, with a steeper part given by the decrease
of all softening parameters (q). After that, � remains zero, and
the shear traction diminishes. Finally, all softening curves tend
to the residual shear value that corresponds to the residual co-
hesion (Cr ) and friction angle (�r ).

In Figure 4b, the distribution of normal displacements with
relative tangential displacements is plotted. It can be observed
that the dilatancy decreases with increase in compressive stress,
and approaches a limiting value when the interface degrades
to the residual dilation angle (�r ).

5. Sub Stepping

The robustness, accuracy, and nonassociative nature of the
present numerical algorithm are tested. A parameter study
has been performed to check these aspects on the proposed
cohesive zone model and the numerical implementation of
different examples are presented below.

5.1. Robustness

To check the robustness of proposed algorithm, a set of dif-
ferent load paths, and different load increments are applied
to the model. Seven load paths have been considered each for
tension shear and compression regions respectively. Load has
been applied in all cases from � = 0 up to a certain value of
the trial stress state, �trail . In particular, four load increments
are considered, namely, N = 5, 25, 125, 625 (see Figure 5).
The material parameters used in these examples are given in
Tables 1 and 2. The results of these numerical examples are
given in Table 3, in terms of number of iterations required for
the convergence of algorithm with the tolerance of 1e−10.

The result shows that for load paths whose directions are
different from  = 0 and  = 90, the algorithm does not con-
verge if the loading step size is larger than 125. It demonstrates
the need for sub stepping to achieve optimal performance. The
sub stepping procedure will only take place when the algorithm
does not reach convergence within a prescribed number of it-
erations. To check the results of this new procedure the same
set of numerical tests are repeated, and the results obtained
are given in Table 4. The number of iterations is augmented

Table 7. Convergence of algorithm with sub-stepping for different dilatency for load step = 0.005, at a Gauss point level

p = 0 p = 0.1 p = 1 p = 10 p = 20 p = 22

� = 0 3 3 3 3 13 16
� = 15 7 7 7 8 24 16
P = 30 8 8 9 18 39 59(6)
� = 45 10 10 11 39(3) 66(3) 66(3)
� = 60 13 13 17 116(9) 178(6) 220(5)
� = 75 21(2) 25(3) 75(10) 121(3) 138(26) 539(26)
� = 90 37(9) 41(9) 57(9) 390(75) 341(57) 942(57)
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Table 8. Properties for potential brick cracks

Elastic Inelastic

Knn , Ktt, �0, G I
f ,

N/mm3 N/mm3 N/mm2 Nmm/mm2

106 106 2.0 0.08

by the total number of sub increments between parentheses,
which are required for convergence.

5.2. Accuracy

It has also been observed that the number of iterations in-
creases as the load step size increases. However, there are spe-
cial situations in which they do not follow this trend, i.e.,
uniaxial tension ( = 0), pure shear ( = 90), and uniaxial
compression ( = 180). If the convergence for some special
situation does not depend on the loading step size, the issue
remains whether the accuracy of the solution depends strongly
on the load step size. To determine these aspects, three different
load steps are considered where u equals 1 × 10−4, 5 × 10−4,
and 1 × 10−3. A fourth loading size step with u equals 1 × 10−5

is used to compare the accuracy of the results. This step size is
considered sufficiently small to serve as an accurate reference
solution for making the comparison and estimating the error.

The results are plotted in Figure 6, which shows that:

• the error in the solution increases as the load step size
increases;

• the integration algorithm requires sub stepping not only to
ensure convergence of the solution but also to ensure the
accuracy of the final solution. This is evident from the fact
that a decrease in percentage error of stress is observed with
a decrease in load step.

5.2.1. Nonassociativity

The capacity of proposed algorithm for different nonassocia-
tivity is checked here. A set of different dilatancy angles for a
given load step is applied to 2D cohesive model. Seven dila-
tancy angles are considered � = 0, 15, 30, 45, 60, 75, 90.
The displacement is applied in tangential direction at different
vertical pressures, i.e., p = 0, 0.1, 1, 10, 20, 22. The result of

Table 9. Elastic material property for the brick and joints

Brick Joint

E, Knn , Ktt,

N/mm2 �, N/mm3 N/mm3

16700 0.15 82; 110; 82 36; 50; 36

these numerical examples are summarized in Tables 5 and 6, in
terms of the number of iterations required for the convergence
of algorithm with the tolerance of 1e−10.

The results show that for higher dilatancy angles and load
steps, the algorithm does not converge. Thus, sub stepping
is also required for robust nonassociativity. The same set of
numerical tests is repeated for the algorithm with sub stepping,
and the results are summarized in Table 7. The number of
iterations is augmented by the total number of sub increments
between parentheses, which are required for convergence.

5.2.2. Algorithm Aspect with Sub Stepping

The algorithm requires sub stepping not only to ensure con-
vergence of the solution but also to ensure the accuracy of the
final solution at both local and global level. Fortunately, it is
possible to integrate the constitutive equations by sub-dividing
the load at the constitutive level [39–41]. Based on these con-
siderations, a sub-stepping scheme has been developed for the
present cohesive model. This technique starts with the pre-
vious system of Eq. (30). The algebraic problem is modified
significantly in order to obtain consistent tangent operator in
the case of sub stepping. It is assumed that any increment can
be subdivided into N sub-increments, which could be of dif-
ferent sizes but the sum of all sub-increments always equals to
the total displacement at the end of the increment:

�� =

N
∑

i=0

��i = ��
(

�i
)

, (38)

where 0 < �i < 1 and

N
∑

i=0

�i = 1.

Fig. 7. Simplified micro-modeling.
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Table 10. Inelastic material property for the joints

Tension Shear Cap

�0, G I
f , C0 \ Cr , CQ0 \ CQr , �0 \ �r , � , G I I

f , �p,

N/mm2 Nmm/mm2 N/mm2 N/mm2 radian radian Nmm/mm2 N/mm2

0.25 5�2
0 /2Knn 1.4�0/0.1CQ 1.1�0/0.1CQ 0.65/0.50 0 10G I

f 10.5

Hence, rewriting the Eq. (30), for sub-increment:

r (�i , q i ,�
i ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�
i − (�tr ial )i + �
i Kmi = 0,

q i − q i−1 + �
i
�

i = 0,

F(�i , q i ) = 0.

(39)
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Fig. 8. Comparison of experimental and numerical result ob-
tained from the proposed model: (a) SW-1; (b) SW-2; (c) SW-3.

Note that now the independent variable of the system of
equation are �

i , q i ,�
i and the methodology for solving the
equation is the same as the one in the previous section. For
consistent tangent operator we take the derivative of the last
converged Jacobian for sub stepping with respect to �� and
then apply the chain rule:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

∂�
i

∂�
i

]

2x2

[

∂q i

∂�
i

]

6x2

[

∂
i

∂�
i

]

1x2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

9x2

= J−1(�i
n+1, q i

n+1,�
i
n+1)9x9

⎡

⎣

�i K

0
0

⎤

⎦

9x2

(40)

The consistent tangent operator of a sub-increment can be ex-
tracted from the preceding expression. The consistent tangent
operator of the load step is obtained by linear combination of
all the sub-increments and can be written as:

[

∂�

∂�

]

=

N
∑

i=0

[

∂�
i

∂�
i

]

. (41)

6. Numerical Examples

In the present section, a proposed cohesive zone model is ap-
plied to the failure analysis of unreinforced masonry for vali-
dation, by comparing the numerical results with experimental
results available in the literature. The simplified micro mod-
eling is adopted for numerical modeling of unreinforced ma-
sonry under plain stress condition. In simplified micro mod-
eling, mortar and a two unit-mortar interface is lumped into
the joint between expended units (see Figure 7). The units are
expended in order to keep the structure geometry unchanged.
Thus, masonry is considered as a set of elastic blocks bonded
by potential crack, potential slip, and crushing plane at the
joints. The joint interface is modeled with the proposed cohe-
sive zone model.

6.1. Masonry Shear Wall

An experimental study was carried out on masonry shear walls
by Vermeltfoort and Raijmakers [42, 43]. The authors con-
ducted the tests on two types of shear wall, i.e., one without
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Fig. 9. (a) Experimental failure pattern for shear wall without opening SW-1; minimum principal stress at different displacement with
deformed mesh for different shear wall without opening SW-1: (b) d = 1 (mm); (c) d = 2 (mm); (d) d = 4 (mm).

the opening (SW) and the other with the opening (SWO). The
authors used a set-up that consisted of a pier with a width
to height ratio of one (dimensions 990 × 1000 [mm2]). It was
built-up with 18 courses, of which two courses were clamped in
steel beam and only 16 courses were active. The wall was made

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Relative Tangential Displacement [mm]

L
a

te
ra

l 
L

o
a

d
 [

K
N

]

Experimental (SWO−1a)

Experimental (SWO−1b)

Numerical

Fig. 10. Comparison of experimental and numerical result ob-
tained from the proposed model for SWO-1.

up of wire cut solid clay [210 × 52 × 100 mm3] and mortar
[10 mm], prepared with a volumetric cement:lime:sand ratio
(1:2:9). The test involves a monotonically increasing horizon-
tal load under different levels of uniformly distributed normal
stress, keeping the bottom and top boundaries horizontally
fixed.

In the present work, both types of walls are consid-
ered for numerical modeling. The micro-properties of the
shear wall material are obtained from [42, 43] and are
given in Tables 8, 9, and 10. The hardening/softening law
for the compression cap is defined by the set {�, w

p
4 } =

{(�p/3, 0.0); (�p, 0.09); (�p/2, 0.49); (�p/7,∞)}. For the nu-
merical analyses, units are represented by plane stress con-
tinuum elements (8-noded) while line interface elements (4-
noded, with two integration points) are adopted for the joints
and for the potential vertical cracks in the middle of the
unit.

6.1.1. Shear Wall Without Opening (SW)

This wall was considered to be subjected to three different
initial vertical pressures, i.e., for the wall SW-1a and SW-1b
pressure equals 0.30 [N/mm2], for the wall SW-2 pressure
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Fig. 11. Experimental failure pattern for the different walls with opening [42, 43, 44] for SWO-1.

equals 1.21 [N/mm2], and for the wall SW-3 pressure equals
2.12 [N/mm2]. On application of the monotonically increasing
horizontal load, initially horizontal tensile cracks develop at
the bottom and top of the wall particularly in the bed joint
at an early loading stage and then a diagonal stepped crack
form. Finally, the diagonal stepped crack and crushing of the
toes of the masonry leads to the overall failure of the masonry,
simultaneously causing the bricks to crack.

The comparison between numerical and experimental load-
displacement behavior is shown in Figure 8. The experimental
behavior is satisfactorily reproduced by the proposed cohe-
sive zone model. All the walls behave in the same manner,
confirming the idea that the masonry can withstand substan-
tial post-peak deformation at reduced strength. The masonry
shear wall also shows that higher initial vertical loads lead to
increase its strength, however ductility deceases.

The sharp load drops in Figure 8b are attributed to sudden
drop of shear stress at single integration point of the potential
crack, caused by the cracking of a brick. The choice of setting
the shear stress in potential crack of brick equal to zero upon
initiation of the crack, causes the problems related to conver-

gence, thereby forcing the choice of load steps to be extremely
small and impractical. This affects the numerical robustness of
the model, due release of a large amount of energy in a single
load step. However, if sufficiently fine meshes are adopted, the
solution obtained is independent of the size of the load incre-
ments. The problem of a large amount of energy release in a
single load step is overcome by gradually decreasing the shear
stress to zero in several load steps rather than a sudden drop
to zero. This assumption allows us to overcome the problem
and is confirmed by the numerical example on the shear wall
SW-1 and SW-3 (Figures 8a and 8c).

The numerical crack pattern and the minimum principle
stress distribution for SW-1 are presented in Figure 9. Initially,
the vertical loads are applied, which make the stress distribu-
tion continuous. At the early stage of horizontal displacement,
small diagonal compression struts form. These struts are de-
fined by the center of the bricks due to the different stiffnesses
of joints and bricks (Figure 9b). On further loading, a diagonal
stepped crack opens and prevents the formation of compres-
sive struts parallel to the diagonal line defined by the center of
the bricks (Figure 9c). Simultaneously, diagonal struts initiate

Fig. 12. Minimum principal stress at different displacement (d) with deformed mesh for shear wall with opening for SWO-1: (a) d = 5
(mm); (b) d = 5 (mm).
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the splitting of the bricks due to Possion’s effect. When the
diagonal cracks are fully open, two distinct struts are formed,
one at each side of the diagonal crack. Finally the diagonal
stepped crack and crushing of the toes in compression leads
to collapse of the shear wall, simultaneously with cracks in the
brick (Figure 9d).

6.1.2. Shear Wall With Opening (SWO)

These walls are subjected to only normal pressure of 0.30
[N/mm2]. In these shear walls, opening creates two small weak
piers on either side of the opening. Thus, two compressive
struts develop under horizontal loading, spreading the load
around both sides of the opening. On applying the mono-
tonically increasing horizontal load, first the diagonal zigzag
cracks arise from two corners of the opening. Then, the tensile
cracks arise from the boundary of the wall at the base and top
of the small piers (in the bed joint). Finally, a collapse mech-
anism is formed by failure of the compressed toes, located at
the bottom and top of the wall as well as the small piers.

The comparison between numerical and experimental load-
displacement curves are shown in Figure 10. The numerical
results are in good agreement with those obtained from the
experiments [44]. A good comparison of the SWO-1a and
numerical model is obtained because calculated stiffness of the
numerical model matches with the experimental values. This
indicates that the proposed model is able to predict correct
failure mechanism.

The numerical crack pattern and minimum principle stress
distribution are presented in the Figure 12. During the initial
horizontal loading, two diagonal cracks arise from the corners
of the opening. Simultaneously, horizontal cracks in the top
and the bottom of the piers also arise (Figure 12a). The load
is transferred by the two large compression struts on either
side of the opening. On further loading, the previous diago-
nal crack will stop and two additional diagonal cracks start
to open (Figure 12b). The two compression struts become
narrower. Finally, the diagonal crack progresses toward the
supports and then the compression toes at the top and bot-
tom are crushed. A complete collapse mechanism is formed
with the failure of the smaller piers.

7. Discussion and Conclusions

A cohesive zone model interface element has been developed
for quasi-brittle materials like masonry by using mathemati-
cal theory of plasticity. The proposed model is represented by
a single surface yield criteria, which is capable of represent-
ing Coulomb friction failure, cracking of material by cut-off
and crushing of plain by cap-off in compression. The pro-
posed yield function is simple extension of Mohr–Coulomb
criterion, which makes use of property of arc-tan for cut and
cap-off. The algorithms have been developed by integrating
the differential equations by fully implicit Backward Euler
method. These equations are solved by full Newton–Raphson
technique in monolithic manner, which leads to combined lo-
cal and global approach.

A careful and detailed investigation has been performed to
check robustness and accuracy of the algorithm for different

load paths and nonassociativity. It has been found that sub
stepping is required to ensure convergence and accuracy of
the final solution at both local and global level. Hence the
algorithm is combined with a sub stepping strategy. Finally,
validation of the cohesive zone model has been carried out
against the experiments carried out on the shear walls. The
numerical result shows that the model is able to reproduce the
complete path of the structures up to and beyond the peak,
until total degradation of strength, without any numerical
difficulties in the proposed cohesive zone model.
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Appendix A: Expression of Cohesive Model, First
and Second Derivatives

T1 := [(C − �nn tan(�))], T2 := [CQ − �nn tan(� )],

ft(�, q) :=
2

�
arctan

(

� − �nn

�t

)

, Dt := 1 +

(

�nn − �

�t

)2

,

fc(�, q) :=
2

�
arctan

(

�nn − �

�c

)

, Dc := 1 +

(

�nn − �

�t

)2

,

F(�, q) := −[(C − �nn tan(�))]2 fc ft + �2
tt,

Q(�, q) := −[CQ − �nn tan(� )]2 fc ft + �2
tt,

n =

[

2T1 tan � fc ft − T2
1

(

2 fc

��t Dt

+
2 ft

��c Dc

)

2�tt

]

,

m =

[

2T2 tan � fc ft − T2
2

(

2 fc

��t Dt

+
2 ft

��c Dc

)

2�tt

]

.

Derivative of m :

T3 =
fc

��3
t D2

t

+
ft

��3
c D2

c

+
4

�2�t Dt�c Dc

,

∂m

∂�

=

⎡

⎣

−2 tan2 � fc ft + 8T2 tan �

(
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��t Dt

+
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��c Dc

)

+ 2T2
2 T3 0

0 2

⎤

⎦ ,

∂m1

∂q
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

2 tan � fc ft − 4T2

(

fc

��t Dt

+
ft

��c Dc

)

0

2 sec2 � fc ft(T2 − �nn tan � )

−2(�nn sec2 � − 2T2)

(

fc

��t Dc

+
ft

��c Dc

)

−4 tan � T2 fc

��t Dt

+ 4T2

(

1

�2�c Dc�t Dt

−
fc(� − �)

��3
t D2

t

)

−4 tan � T2 ft

��c Dc

+ 4T2

(

1

�2�c Dc�t Dt

−
fc(� − �)

��3
c D2

c

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,



Cohesive Zone Model for in Quasi-Brittle Materials 695

H =

⎡

⎢

⎢

⎢

⎢

⎣

〈�nn〉 0

0 �tt − �tr1
sign(�tt)

0 (�ttr1
− �ttr2

)sign(�tt)

〈〈�nn〉〉 0

⎤

⎥

⎥

⎥

⎥

⎦

,

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

−m1 H(1, 1)
	C

G I
f

− m2 H(2, 2)
	C

G I I
f

)

(C0 − Cr ) exp

−	C

(

w
p
1

G I
f

+
w

p
2

G I I
f

)

(

−m1 H(1, 1)
	CQ

G I
f

− m2 H(2, 2)
	CQ

G I I
f

)

(CQ0
− CQr

) exp

−	CQ

(

w
p
1

G I
f

+
w

p
2

G I I
f

)

−m2 H(3, 2)	�(�0 − �r ) exp−	�w
p
3

−m2 H(3, 2)	� (�0 − �r ) exp−	� w
p
3

(

−m1 H(1, 1)
	�

G I
f

− m2 H(2, 2)
	�

G I I
f

)

�0 exp

−	�

(

w
p
1

G I
f

+
w

p
2

G I I
f

)

−m1 H(4, 1)
∂�

∂w4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

∂�

∂w4

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2(�p − �0)

(

(

2w
p

4

wp

)

−

(

w
p

4

wp

)2
)−

1

2

(

2

wp

+
2w4

w2
p

)

if w
p

4 ≤ wp

2(�m − �p)

(

w
p

4 − wp

(wm − wp)2

)

if wp ≤ w
p

4 ≤ wm

	� exp
	�

(

w
p

4 − wp

�m − �r

)

if w
p

4 > wm

.

Appendix B: Algorithms for Local Newton Solvers

Steps

1. Recover Solution Dependent Variables from the last
converged iteration cycle

�n+1, qn, W
p
n , �

p
n

2. Compute trial elastic stress
�

tr ial
n+1 = �n + K��

3. Compute the yield function F tr ial (�tr ial
n+1 , qn)

4. Check for the yield condition
if F tr ial (�tr ial

n+1 , qn) < 0 then
Elastic State

update �n+1 = �
tr ial
n+1 ;

update qn+1 = qn ;
update W

p
n = W

p
n ;

update �
p
n = �

p
n ;

else

Plastic State

Compute the contact point F(�n + ���, qn);
While||r (�n, qn,�
n)|| < tol

Compute nk
n, mk

n, �
k
n ;

Compute Jk
n(�k

n, qk
n,�
k

n) =
r (�k

n, qk
n,�
k

n)

∂(�k
n, qk

n, 
k
n)

;

Compute �(�n, qn, 
n)k+1 = −J−1(�k
n, qk

n,�
k
n)

r(�k
n, qk

n,�
k
n);

Compute [�n, qn, 
n ]k+1 = [�n, qn, 
n ]k

+�(�n, qn, 
n)k+1;
end

update �n+1 = �
k+1
n ;

update qn+1 = qk+1
n ;

update W
p
n+1 = (W

p
n )k+1 ;

update �
p
n = (�

p
n )k+1 ;

Compute Kep

end
Algorithm 1: Monolithic numerical integration algorithm.

Steps

1. Recover Solution Dependent Variables from the last
converged iteration cycle

�n+1, qn, W
p
n , �

p
n

2. Compute trial elastic stress
�

tr ial
n+1 = �n + K��

3. Compute the yield function F tr ial (�tr ial
n+1 , qn)

4. Check for the yield condition
if F tr ial (�tr ial

n+1 , qn) < 0 then

Elastic State

update �n+1 = �
tr ial
n+1 ;

update qn+1 = qn ;
update W

p
n = W

p
n ;

update �
p
n = �

p
n ;

else

Plastic State

Compute the contact point F(�n + ���, qn);
Compute (Kep)0 = � K ;
While i < n

While ||r (�n, qn,�
n)|| < tol do

for simplicity superscript ’i’ is not used ;
Compute nk

n, mk
n, �

k
n ;

Compute Jk
n(�k

n, qk
n,�
k

n)

=
r (�k

n, qk
n,�
k

n)

∂(�k
n, qk

n, 
k
n)

;
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Compute �(�n, qn, 
n)k+1 = −J−1

(�k
n, qk

n,�
k
n)r(�k

n, qk
n,�
k

n);
Compute [�n, qn, 
n ]k+1

= [�n, qn, 
n ]k�(�n, qn, 
n)k+1;
end

update (�n+1)i = (�k+1
n )i ;

update (qn+1)i = (qk+1
n )i ;

update (W
p
n+1)i = ((W

p
n )k+1)i ;

Compute (Kep)i

end

update �n+1 = (�k+1
n )N;

update qn+1 = (qk+1
n )N;

update W
p
n+1 = ((W

p
n )k+1)N ;

Compute Kep =
N
∑

i=0

(Kep)i

end
Algorithm 2: Monolithic numerical integration algorithm
with sub-stepping.


