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A NOTE ON THE FOURIER COEFFICIENTS OF HALF-INTEGRAL

WEIGHT MODULAR FORMS

NARASIMHA KUMAR AND SOMA PURKAIT

Abstract. In this note, we show that the algebraicity of the Fourier coefficients of
half-integral weight modular forms can be determined by checking the algebraicity of
the first few of them. We also give a necessary and sufficient condition for a half-integral
weight modular form to be in Kohnen’s +-subspace by considering only finitely many
terms.

1. Introduction

In the theory of modular forms, it is of fundamental interest to understand the alge-
braicity of the Fourier coefficients of modular forms. It is well-known that a normalized
Hecke eigenform of integral weight has algebraic Fourier coefficients, since the Hecke
eigenvalues coincide with the Fourier coefficients. Moreover, there exists a number field
containing all these Fourier coefficients. However, for half-integral weight modular forms,
the authors are not aware of any such results.

In this note, we show that if the Fourier coefficients of a half-integral weight modular
form are algebraic up to Sturm’s bound (for half-integral weight modular forms), which
is specified in terms of the level and weight of the corresponding modular form, then so
are all others (cf. Theorem 3.2 in the text).

In his remarkable work [3], Kohnen defines the +-subspace (new) and proves that it
is isomorphic to a space of newforms of integral weight via certain linear combination of
Shimura correspondences. In the last section, we give a necessary and sufficient condition
for a half-integral weight modular form to be in Kohnen’s +-subspace by checking the
vanishing condition up to Sturm’s bound.

2. Multiplication by Theta series

Let k > 1 be an odd integer. Let f be a half-integral weight modular form of weight k/2,
level N with 4 | N , and an even Dirichlet character χ. In particular, f ∈ Mk/2(Γ1(N)),

therefore f has a Fourier expansion of the form f(z) =
∑∞

n=0 af (n)q
n, where q = e2πiz.

Let Θ(z) =
∑∞

n=0 bΘ(n)q
n2

with bΘ(0) = 1, bΘ(n) = 2 for all n ≥ 1.
In this section, we show that the Fourier coefficients of f are algebraic if the Fourier

coefficients of fΘ are algebraic.
By [9], we know that Θ ∈ M1/2(4, χtriv), where χtriv stands for the trivial Dirichlet

character. Define

g := fΘ.

If f ∈ Mk/2(N,χ), then it is easy to see that g ∈ Mk+1

2

(N,χ.χ
k+1

2

−1 ), where χ−1 is the

non-trivial Dirichlet character modulo 4.
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Suppose g(z) has the q-expansion given by g(z) =
∑∞

n=0 c(n)q
n. Since g is the product

of f and Θ, we see that for all n ≥ 0, we have

c(n) =
∑

x+y2=n

af (x)bΘ(y).

In general, the product of two eigenforms need not be an eigenform, in particular fΘ
need not be an eigenform. Hence, one cannot conclude that the Fourier coefficients of fΘ
generate a number field. However, if we assume that Fourier coefficients of fΘ generate
a number field, then by a simple induction argument, we can show that the Fourier
coefficients of f also generate the same number field.

Instead of proving the above claim for f and Θ, we prove it for the product of two
general half-integral weight modular forms.

Proposition 2.1. Let f(z) =
∑∞

n=n0
anq

n ∈ Mk1/2(N1, χ1), h(z) =
∑∞

n=n1
bnq

n ∈
Mk2/2(N2, χ2) be two modular forms such that an0

6= 0, bn1
6= 0. Suppose that the Fourier

coefficients of the product fh belong to a number field K. If ai ∈ K for all i ≥ n0, then
bi ∈ K for all i ≥ n1.

Proof. We prove the proposition by induction. Suppose

fh =

∞
∑

n=n0+n1

cnq
n

is the q-expansion of fh.
Look at the first non-zero coefficient of the product fh, i.e., n0 + n1-th term of fh,

which is cn0+n1
= an0

bn1
∈ K. Since an0

6= 0, we get that bn1
is a non-zero element of K.

Now, look at the n0+n1+1-th term of the product fh, which is cn0+n1+1 = an0
bn1+1+

an0+1bn1
∈ K. Since an0

, an0+1, bn1
∈ K, we get that bn1+1 ∈ K.

Now, we assume that bn1
, bn1+1, . . . , bn1+r−1 ∈ K and show that bn1+r ∈ K. We can

write

cn0+n1+r = an0
bn1+r + an0+1bn1+r−1 + . . . + an0+rbn1

∈ K.

Since bn1
, bn1+1, . . . , bn1+r−1 ∈ K and an0

, an0+1, . . . , an0+r ∈ K, we see that bn1+r also
belongs to K. This proves the proposition. �

Observe that the above proof also works for any two general Fourier q-expansions. Now,
coming back to the pair (f,Θ), we have the following:

Corollary 2.2. If the coefficients cn(n ∈ N) of g = fΘ belong to a number field K, then

the Fourier coefficients af (n) ∈ K for all n.

We shall illustrate the above proposition with an example.

Example 1. Take k = 7, N = 8. Using MAGMA[2], we see that S7/2(8, χtriv) is one-
dimensional and is spanned by

f = q − 2q2 − 4q5 + 12q6 − 3q9 − 20q10 +O(q12).

Now consider the integral weight modular form g := fΘ. This is an element of S4(8, χtriv),
which is of dimension 1. Moreover, Snew

4 (8, χtriv) is also of dimension 1. By comparing
the Fourier coefficient of q in fΘ, we see that

Snew
4 (8, χtriv) = 〈g〉.

By Proposition 2.1, we see that the Fourier coefficients of f generate a number field.

Remark 2.3. The same argument go through, if you replace Θ by Θ(ψ, 0, z) for ψ an
even Dirichlet character, where Θ(ψ, 0, z) =

∑∞
n=0 ψ(n)bΘ(n).
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Let d be a positive integer and V (d) be the usual shift operator. If the Fourier co-
efficients of f(z) · V (d)Θ(ψ, 0, z) belongs to a number field K, then so are the Fourier
coefficients of f(z).

3. Main result

In this section, we show that if the Fourier coefficients of a half-integral weight modular
form are algebraic up to Sturm’s bound (for half-integral weight modular forms), which
is specified in terms of the level and weight of the corresponding modular form, then so
are all others.

Let k, N be positive integers with k odd and 4 | N . Let χ be an even Dirichlet character
of modulus N . In his thesis Basmaji [1] gave an algorithm for computing a basis for the
space of half-integral weight modular forms of level divisible by 16. The main idea of

the algorithm is to use theta series Θ =
∑∞

n=−∞ qn
2

, Θ1 = Θ−V (4)Θ
2 and the following

embedding,

ϕ : Sk/2(N,χ) → S × S, f 7→ (fΘ, fΘ1),

where S = S k+1

2

(

N, χ · χ
k+1

2

−1

)

. This idea was later generalized by Steve Donnelly for

levels divisible by 4 by using different theta-multipliers [2].
We will be requiring the following lemma, which is an analogue of Sturm’s Theorem [10,

page 276] for half-integral weight modular forms.

Lemma 3.1. Let f =
∑∞

n=0 af (n)q
n ∈ Mk/2(N,χ) with k odd. If af (n) = 0 for n ≤

k
24 [SL2(Z) : Γ0(N)], then f = 0.

Proof. Set B = k
24 [SL2(Z) : Γ0(N)]. Since af (n) = 0 for n ≤ B, the Fourier expansion of

f at ∞ can be written as

f = qB+1(af (B + 1) + af (B + 2)q + · · · ).

Let s be the order of the Dirichlet character χ. Then, it is easy to see that f4s ∈
M2ks(Γ0(N), χtriv) is an integral weight modular form. Clearly, the Fourier expansion of
f4s at ∞ looks like

f4s = q4s(B+1)

(

∞
∑

n=0

cnq
n

)

,

where cn is in terms of af (i) for i ≤ n.

Since the Fourier coefficients of f4s are zero up to 4sB = 2ks
12 [SL2(Z) : Γ0(N)], by

applying Sturm’s theorem [10, page 276] to f4s, we get that f4s = 0. This implies that
f = 0, which proves the lemma. �

Our results are in the flavor of Sturm’s work [10] on determining modular forms by
checking congruences up to a finite number. Set Bk(N) := k

24 · [SL2(Z) : Γ0(N)].

Theorem 3.2. Let f =
∑∞

n=1 af (n)q
n ∈ Sk/2(N,χ) be a non-zero half-integral weight

modular form. Suppose af (m) is algebraic for all 1 ≤ m ≤ Bk(N). Then all Fourier

coefficients are algebraic. Moreover, there exists a number field Kf such that af (n) ∈ Kf

for all n.

Proof. By Basmaji’s algorithm [1], we can construct a basis for the space of cusp forms
Sk/2(N,χ) such that the basis elements have Fourier coefficients defined over the number
field generated by χ. Let f1, f2, . . . , fr denote such a basis of Sk/2(N,χ). For each i,
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suppose fi :=
∑∞

n=1 ai(n)q
n is the q-expansion. Write f =

∑r
i=1 λifi where λi ∈ C.

Hence, we have the following system of linear equations given by




















a1(1) a2(1) · · · ar(1)
...

... · · ·
...

a1(m) a2(m) · · · ar(m)
...

... · · ·
...

a1(n) a2(n) · · · ar(n)
...

... · · ·
...































λ1
λ2
...
λr











=





















af (1)
...

af (m)
...

af (n)
...





















(3.1)

For simplicity, let B denote Bk(N). Now from the above matrix, we consider the first B
rows to form the following B × r-matrix, where B ≥ r:

A :=















a1(1) a2(1) · · · ar(1)
...

... · · ·
...

a1(m) a2(m) · · · ar(m)
...

... · · ·
...

a1(B) a2(B) · · · ar(B)















(3.2)

We want to show that the rank of A is r. Suppose not. Then, there exists α1, . . . , αr ∈ C,
not all zero, such that

r
∑

i=1

αiai(j) = 0, (3.3)

for each j = 1, . . . , B. Now, consider the half-integral weight modular form

h := α1f1 + α2f2 + . . .+ αrfr.

Now, by (3.3), the first B coefficients of h are zero. By Lemma 3.1, we see that the
modular form h is identically zero. Therefore, we have

α1f1 + α2f2 + . . .+ αrfr = 0.

Since f1, . . . , fr are linearly independent, we see that all αi’s have to be zero, which is
a contradiction. Therefore, the matrix A has rank r. Let C be the r × r submatrix of
A with full rank r. Now, consider the following system of linear equations (formed from
the (3.1))

C











λ1
λ2
...
λr











=











af (i1)
af (i2)

...
af (ir)











(3.4)

for some distinct 1 ≤ i1 < i2 < · · · < ir ≤ B. Since C is invertible, we see that λi’s can
be expressed as an algebraic linear combination of af (ij) for j = 1, . . . , r. Therefore, λi’s
are algebraic, hence all the Fourier coefficients of f are algebraic.

Now, take Kf to the number field generated by λ1, . . . , λn and the values of χ. Since
f =

∑n
i=1 λifi, we see that af (n) ∈ Kf for all n. �

Remark 3.3. Using the same method one can see that the above theorem also holds for
integral weight cusp forms for any level and nebentypus.

One could also use the idea of multiplying the half-integral weight modular form f of any
level and nebentypus by theta series Θ (as in Section 2) and argue in the integral weight
case setting (cf. [5, Lemma 3.1]). In this approach, one may have to check the algebraicity
of the Fourier coefficients of fΘ up to k+1

24 [SL2(Z) : Γ0(N)] to conclude that all the other
coefficients of fΘ are algebraic, and hence the coefficients of f as well. However, if we
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work completely in the half-integral weight setting, it is sufficient to check the algebraicity
of the Fourier coefficients of f up to B := k

24 [SL2(Z) : Γ0(N)] (in particular, this implies
that only the first B coefficients of fΘ are algebraic). Hence, we chose to work in the
half-integral weight setting which gives a bit better bound.

We predict that for an eigenform f such a bound for the algebraicity can be sharpened
by using Waldspurger’s results [11]. We hope to come back to this in the future.

4. When N/4 is odd and square-free

Let k, N be positive integers with k ≥ 3 odd and 4 | N . Let χ be an even quadratic
Dirichlet character of modulus N .

Let F =
∑∞

n=1A(n)q
n be a newform of weight k − 1, level N/4 odd and square-free

with trivial nebentypus. Let f be a non-zero element of Sk/2(N,χ, F ) (for the definition,
see §4.1). In this case, checking the algebraicity of the Fourier coefficients of f becomes
practically effective.

4.1. An algebraic basis for Sk/2(N,χ, F ): In this section, we shall recall some basic
definitions and results.

Let S′
k/2(N,χ) be the orthogonal complement of the subspace of Sk/2(N,χ) spanned

by single-variable theta series with respect to the Petersson inner product. Note that for
k ≥ 5, we have S′

k/2(N,χ) = Sk/2(N,χ).

Let N ′ = N/2. For M | N ′ such that Cond(χ2) | M and F ∈ Snew
k−1(M,χ2), Shimura

defines

Sk/2(N,χ, F ) = {f ∈ S′
k/2(N,χ) : Tp2(f) = λFp f for almost all p ∤ N};

here Tp(F ) = λFp F . In [6, Corollary 5.2] the second author gives an algorithm for com-
puting these subspaces. We will need the following proposition in the next section.

Proposition 4.1. Let F be a newform in Snew
k−1(M,χ2) with level M dividing N ′. Then

there exists a basis of Sk/2(N,χ, F ) defined over the number field generated by the Fourier

coefficients of F and χ.

Proof. By Basmaji’s algorithm [1], one can construct a basis for the space of cusp forms
Sk/2(N,χ) defined over the number field generated by χ. Let f1, f2, . . . fr be such a basis

and let fi =
∑∞

n=1 ai(n)q
n. Let p1 < p2 < · · · < ps be the primes chosen as in [6, Corollary

5.2]. Let Tp2j
fi =

∑∞
n=1 bi,j(n)q

n for 1 ≤ i ≤ r and 1 ≤ j ≤ s. By the same corollary to

construct a basis for Sk/2(N,χ, F ), we need to determine a basis of the solution space for
the simultaneous homogeneous system of linear equations given by



















...
... . . .

...
b1,1(n)− λFp1a1(n) b2,1(n)− λFp1a2(n) . . . br,1(n)− λFp1ar(n)

...
... . . .

...
b1,s(n)− λFpsa1(n) b2,s(n)− λFpsa2(n) . . . br,s(n)− λFpsar(n)

...
... . . .

...





























x1
x2
...
xr











=

















...
0
...
0
...

















.

Since the matrix of the system is defined over number field generated by F and χ, the
proposition clearly follows. �

4.2. On determination of the algebraicity. Let F be a newform of weight k− 1 and
level N/4 odd and square-free with trivial nebentypus. Let S+

k/2(N,χ) denote Kohnen’s

+-subspace of Sk/2(N,χ) consisting of modular forms f =
∑∞

n=1 af (n)q
n with af (n) = 0

for n ≡ 2, (−1)
k+1

2 (mod 4). Set S+
k/2(N,χ, F ) = S+

k/2(N,χ) ∩ Sk/2(N,χ, F ).
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By Waldspurger [11, Théorème 1], we know that Sk/2(N,χ, F ) is 2-dimensional as N/4
is odd and square-free. By Proposition 4.1, we know that there exists a basis f1, f2 of
Sk/2(N,χ, F ), which are defined over the field generated by the Fourier coefficients of F

and χ. By [3, Theorem 2], Kohnen’s +-subspace S+
k/2(N,χ, F ) is 1-dimensional. Suppose

that S+
k/2(N,χ, F ) = 〈fK〉.

Proposition 4.2. The Fourier coefficients of fK are algebraic up to a normalization.

Proof. Let fK(z) =
∑∞

n=1 aK(n)qn. Kohnen [3] gives the following isomorphism

S : S+, new
k/2 (N,χ)

∼
−→ Snew

k−1(N/4),

where S is a certain linear combination of Shimura correspondences. Hence there exists
a unique g ∈ S+, new

k/2 (N,χ) such that S(g) = F . Since the Shimura correspondence

commutes with Hecke operators for all primes p [7], we get

S(Tp2g) = Tp(Sg) = Tp(F ) = λFp F = S(λFp g).

Since S is an isomorphism, Tp2g = λFp g for all primes p and thus g equals fK up to a non-

zero scalar. Consider the field KfK = Q(µ2, {λFp }p 6=2) where µ2 is the Hecke eigenvalue

of fK under the Hecke operator T+
4 . By [3], µ2 is algebraic and hence KfK is a number

field.
By [4], it follows that by multiplying fK with aK(|D0|)

−1 where D0 is a suitable fun-

damental discriminant with (−1)
k−1

2 D0 > 0 and aK(|D0|) 6= 0 one can assume that the
Fourier coefficients of fK lie in KfK . Hence the Fourier coefficients of fK are algebraic
up to a normalization. �

By the above proposition, we can now choose the basis element f1 to be equal to fK.
By the argument as in Theorem 3.2, the following result holds for Sk/2(N,χ, F ).

Corollary 4.3. Let f =
∑∞

n=1 af (n)q
n be an element of Sk/2(N,χ, F ) = 〈f1, f2〉, where

fi(z) :=
∑∞

n=1 ai(n)q
n, with ai(∗)’s are algebraic. Choose m0 ∈ N with m0 6≡ 0, (−1)

k−1

2

(mod 4) such that a1(m0) = 0 and a2(m0) 6= 0. Choose n0 ∈ N such that a1(n0) 6= 0.
If af (m0), af (n0) are algebraic, then af (n) are algebraic for all n ∈ N. Moreover, there

exists a number field Kf such that af (n) ∈ Kf for all n.

Remark 4.4. One can always find such an m0, n0 as in the above Corollary, since
f2 6∈ S+

k/2(N,χ, F ) and f1 6= 0.

We illustrate the results in this section with a few examples.

Example 2. Let F be the newform in Snew
2 (91) given by the following Fourier expansion

F = q − 2q2 + 2q4 − 3q5 − q7 − 3q9 + 6q10 − 6q11 +O(q12).

We note that F is the newform corresponding to the rank 1 elliptic curve defined by
y2 + y = x3 + x. By [6, Corollary 5.2], the space S3/2(364, χtriv, F ) is generated by

f1 = q3 − q12 + q35 − q40 +O(q50)

f2 = q10 + q12 + q13 − q14 + q17 + q26 − 3q38 − q40 − 2q42 − 2q48 +O(q50).

Here f1 belongs to Kohnen’s +-subspace and where as f2 does not. Thus to check whether
a given eigenform in S3/2(364, χtriv, F ) has algebraic Fourier coefficients, we need to take
m0 = 10 and n0 = 3 in Corollary 4.3.

Example 3. Let G be the newform in Snew
4 (13) given by

G = q + bq2 + (−3b+ 4)q3 + (b− 4)q4 + (b− 2)q5 +O(q6),



FOURIER COEFFICIENTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS 7

where the minimal polynomial of b is x2−x−4. Let χ13 be the quadratic Dirichlet charac-
ter given by the Kronecker symbol

(

13
·

)

. By [6, Corollary 5.2], the space S5/2(52, χ13, G)
is generated by

f1 = q + (b+ 2)q4 + 1/2(−5b − 8)q5 +O(q6)

f2 = q2 + 1/19(−2b + 14)q3 + (−b+ 1)q4 + 1/19(18b + 26)q5 +O(q6).

Here f1 belongs to Kohnen’s +-subspace while f2 does not. Thus for a given eigenform
in S5/2(52, χ13, F ) to have algebraic Fourier coefficients, we just need to take m0 = 2 and
n0 = 1 in Corollary 4.3.

5. Sturm’s bound for modular forms in Kohnen’s +-subspace

In this section, we will give a necessary and sufficient condition for a half-integral weight
modular form to be in Kohnen’s +-subspace by considering only finitely many terms.

Proposition 5.1. Suppose f =
∑∞

n=1 af (n)q
n ∈ Sk/2(N,χ). Then, f ∈ S+

k/2(N,χ) if

and only if af (n) = 0 for all n ≡ 2, (−1)
k+1

2 (mod 4) with 1 ≤ n ≤ B′
k(N), where

B′
k(N) = k

24 · [SL2(Z) : Γ0(4N)].

Proof. For simplicity, let B denote B′
k(N). The necessary condition is clear, by definition.

Suppose that af (n) = 0 for all 1 ≤ n ≤ B with n ≡ 2, (−1)
k+1

2 (mod 4). Since

af (n) = 0 for all 1 ≤ n ≤ B with n ≡ (−1)
k+1

2 (mod 4), Sturm’s bound for the Fourier
coefficients of half-integral weight forms in arithmetic progressions [8, Section 7] implies

that af (n) = 0 for all n with n ≡ (−1)
k+1

2 (mod 4).
Now, it is enough show that af (n) = 0 for all 1 ≤ n ≤ B with n ≡ 2 (mod 4) implies

that af (n) = 0 for all n ∈ N with n ≡ 2 (mod 4). Unfortunately we cannot apply the
above result in this situation because (2, 4) 6= 1. However, we can get around to prove
the required statement.

Applying V and U operators to f (cf. [9]), we obtain that

V (4) ◦ U(4)f(z) =
∞
∑

n=1

af (4n)q
4n ∈ Sk/2(4N,χ),

and

V (2) ◦ U(2)f(z) =
∞
∑

n=1

af (2n)q
2n ∈ Sk/2(2N,χ).

Take

g(z) = V (2) ◦ U(2)f(z) − V (4) ◦ U(4)f(z) =

∞
∑

n=1

af (4n − 2)q4n−2 ∈ Sk/2(4N,χ).

Since af (n) = 0 for all 1 ≤ n ≤ B with n ≡ 2 (mod 4), we see that the first B coefficients
of g(z) are zero. By Lemma 3.1 we obtain that g(z) = 0. Hence af (n) = 0 for all n ≡ 2
(mod 4). This proves the proposition. �

It follows from the above proposition that in Corollary 4.3, we can choose m0, n0 ≤
B′

k(N).
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