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A 2-ADIC CONTROL THEOREM FOR MODULAR CURVES

NARASIMHA KUMAR

Abstract. We study the behaviour of ordinary parts of the homology modules
of modular curves, associated to a decreasing sequence of congruence subgroups
Γ1(N2r) for r ≥ 2, and prove a control theorem for these homology modules.

1. Introduction

Hida theory studies the modular curves associated to the following congruence
subgroups, for primes p ≥ 5 and (p,N) = 1,

· · · ⊂ Γ1(Npr) ⊂ · · · ⊂ Γ1(Np). (∗)

Let Yr denote the Riemann surface associated to the congruence subgroup Γ1(Npr).
One of the important results in Hida theory [3] is that the projective limit of ordinary
parts of the homology modules, i.e., W ord := lim

←−
r

H1(Yr,Zp)
ord, is a free Λ-module

of finite rank and

W ord/arW
ord = H1(Yr,Zp)

ord, (∗∗)

for all r ≥ 1, where ar denotes the augmentation ideal of Z[[1 + prZp]] and Λ =
Zp[[1 + pZp]]. In [1], Emerton gave a proof of these results above for primes p ≥ 5,
using algebraic topology of the Riemann surfaces Yr.

Emerton’s proof for p ≥ 5 holds for p = 3 with N > 1 verbatim, but for p = 2 we
show that similar results hold only after passing to smaller congruence subgroups.
Moreover, there is no restriction on N , i.e., N can be equal to 1 (unlike when p = 3)
(cf. Theorem 5.2 in the text). As a consequence of these results, we proved control
theorems for ordinary 2-adic families of modular forms, see [2]. Some amount of
calculations will be omitted and the reader should refer to those in [1] for more
details.

2. Preliminaries

Throughout this note, let p = 2, q = 4, and N ∈ N such that (p,N) = 1. We
look at the modular curves associated to the following congruence subgroups

· · · ⊂ Γ1(Npr) ⊂ · · · ⊂ Γ1(Nq).

If we take the homology with Z-coefficients of the tower of modular curves, we get
a tower of finitely generated free abelian groups

· · · → Γ1(Npr)ab → · · · → Γ1(Nq)ab, (2.1)

because for r ≥ 2, H1(Γ1(Npr)\H,Z) = Γ1(Npr)ab, where H denotes the upper
half-plane. To understand (2.1), we introduce the congruence subgroups for r ≥ 2:

Φ2
r = Γ1(Nq) ∩ Γ0(p

r).
1
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Clearly, we have Γ1(Npr) ⊂ Φ2
r ⊂ Γ1(Nq) and Γ1(Npr) is a normal subgroup of Φ2

r .
For r ≥ 2, we define Γr := Ker (Z×

p ։ (Zp/p
rZp)

×), which is a subgroup of Γ2 with

index pr−2. Set Γ := Γ2.
We define a morphism of groups

Φ2
r

ηr
−→ Γ/Γr

via the formula
(

a b
c d

)

−→ d mod Γr. (2.2)

Lemma 2.1. The map ηr is surjective.

Proof. Given a d̄ ∈ Γ/Γr, we can take a lift d of d̄ of the form 1 + kqN for some
k ∈ Z, because for any α, β ∈ Γ, α ≡ β (mod Γr) if and only if α − β ∈ prZp.
Now, take c to be Npr. Clearly (c, d) = 1, and hence there exists a, b ∈ Z such that
ad− bc = 1. We see that α =

(

a b
c d

)

∈ Φ2
r and ηr(α) = d̄. �

Remark 2.2. The restriction of ηr to Φ2
r ∩ Γ0(p), which we denote by Res(ηr), is

also surjective onto Γ/Γr. Moreover, we have the following commutative diagram

Φ2
r+1

ηr+1
// //

t−1−t≀

��

Γ/Γr+1

��
��

Φ2
r ∩ Γ0(p)

Res(ηr)
// //Γ/Γr,

where the group Γ0(p) = {
(

a b
c d

)

∈ SL2(Z) | b ≡ 0 (mod 2)} and t =
(

1 0
0 p

)

.

By Lemma 2.1, we have the following short exact sequence of groups

1→ Γ1(Npr)→ Φ2
r

ηr
→ Γ/Γr → 1.

The action of Φ2
r on Γ1(Npr) by conjugation induces an action of Φ2

r/Γ1(Npr) =
Γ/Γr on Γ1(Npr)ab. Thus Γ acts naturally on Γ1(Npr)ab. The morphisms in the
chain

· · · → Γ1(Npr)ab → · · · → Γ1(Nq)ab

are clearly Γ-equivariant.
If r ≥ s > 1, we denote by Φs

r the subgroup of Φ2
r containing Γ1(Npr) whose

quotient by Γ1(Npr) equals Γs/Γr, i.e., Φ
s
r := Γ1(Nps)∩ Γ0(p

r). Moreover, we have

Γ1(Npr)ab → Φs ab
r → Γs/Γr → 1.

For any s > 1, let γs denote a topological generator of Γs. Then the augmentation
ideal as of Λ = Zp[[Γ]] is a principal ideal generated by γs − 1. Similarly, for i > 0,

Γs+i = 〈γ
pi
s 〉 and as+i = (γpi

s − 1). Clearly, for any r ≥ s > 1, the augmentation
ideal of Z[Γs/Γr] is as, and

asΓ1(Npr)ab = [Φs
r,Γ1(Npr)]/[Γ1(Npr),Γ1(Npr)] ⊂ Γ1(Npr)ab,

and the last inclusion follows since Γ1(Npr) is a normal subgroup of Φs
r. The

extension

1→ Γ1(Npr)/[Φs
r,Γ1(Npr)]→ Φs

r/[Φ
s
r,Γ1(Npr)]→ Γs/Γr → 1

is a central extension of a cyclic group, thus the middle group is abelian, implying
that

[Φs
r,Φ

s
r] = [Φs

r,Γ1(Npr)].
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The equality holds because of Φs
r ⊇ Γ1(Npr) and the fact that the commutator

subgroup of the group Φs
r/[Φ

s
r,Γ1(Npr)] is trivial.

Remark 2.3. The following diagram is commutative

Φs
r∩Γ

0(p)
Γ1(Npr)∩Γ0(p)

i
//

∼

%%❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Φs
r

Γ1(Npr)

∼

��

Γs

Γr
.

The diagonal map is an isomorphism, by Remark 2.2. Since Γs/Γr is finite, we see
that the inclusion i is an isomorphism. This remark is useful in proving Lemma 3.6.

To prove Theorems 4.1 and 5.2, we need to understand the images of these
morphisms

Γ1(Npr)ab → Γ1(Nps)ab

in the chain of homology groups as in (2.1). Unfortunately, we do not have a good
characterization these images for r ≥ s > 1 in general, and so we cannot get a good
description of the projective limit. This morphism can be factored as

Γ1(Npr)ab ։ Γ1(Npr)ab/as →֒ Φs ab
r −→ Γ1(Nps)ab,

and the problem is that the second and third morphisms may not be isomorphisms,
in general.

Hida observed that if one applies a certain projection operator arising from the
Atkin U -operator to all these modules then they become isomorphisms, in which
case we have a good control over the images of the morphisms in (2.1). So we now
define the Atkin U -operator and study their properties.

3. Hecke operators

Suppose G,H are two subgroups of a group T , and t ∈ T such that [G : t−1Ht∩
G] <∞. Then one has

Gab V
−→ (t−1Ht ∩G)ab

∼
−→ (H ∩ tGt−1)ab −→ Hab,

where V is the transfer map, the isomorphism is given by conjugating with t, and
the last morphism is induced by H ∩ tGt−1 →֒ H . Taking the composition of all
these we obtain a morphism

[t] : Gab → Hab,

the “Hecke operator” corresponding to t.
In our case, take T = GL2(Q), G = H = a congruence subgroup of SL2 of level

divisible by p, and t =
(

1 0
0 p

)

. We denote the corresponding Hecke operator by U2.

For A =
(

a b
c d

)

∈ Φs
r, we see that

t−1At =
( a bp
c/p d

)

and tAt−1 =
(

a b/p
cp d

)

.

Remark 3.1. Observe that (1, 1), (2, 2)-entries of A and of t±1At∓1 are the same.



4 NARASIMHA KUMAR

It is easy to see that t−1Φs
rt ∩ Φs

r = Φs
r ∩ Γ0(p),Φs

r ∩ tΦs
rt

−1 = Φs
r+1, where the

group Γ0(p) is as in Remark 2.2. Thus, the Atkin U -operator (resp. U ′-operator)
is by definition the composition

Φs ab
r

V
// (Φs

r ∩ Γ0(p))ab
∽

t−t−1

// Φs ab
r+1

// Φs ab
r , (3.1)

(resp., the composition of the first two of above morphisms).

Lemma 3.2. Suppose that r ≥ s > 1, r′ ≥ s′ > 1, r ≥ r′, s ≥ s′, so that Φs
r ⊂ Φs′

r′.
Then the following diagram commutes

Φs ab
r

//

U ′

��

Φs′ ab
r′

U ′

��

Φs ab
r+1

// Φs′ ab
r′+1.

Thus, the Atkin U-operator commutes with the morphism Φs ab
r → Φs′ ab

r′ .

Proof. The proof is similar to the proof of [1, Lem. 3.1]. The final statement
follows from (3.1), since the Atkin U -operator, by definition, is the composition of
U ′-operator and the morphism induced by the inclusion of groups Φs

r+1 ⊂ Φs
r.

�

Corollary 3.3. For r ≥ s > 1, each Φs ab
r is a Z[U ]-module via the action of U

and morphisms between these modules (arising from the inclusions) are morphisms
of Z[U ]-modules. Hence, the cokernels of these morphisms acquire a Z[U ]-module
structure.

Suppose π denote the morphism π : Φs ab
r −→ Φs ab

r−1 and π′ for the morphism
π′ : Φs ab

r+1 −→ Φs ab
r . Then, by Lemma 3.2, we have

U ′ ◦ π = π′ ◦ U ′ = U ∈ EndZ(Φ
s ab
r ). (3.2)

By the definition of U ′, we see that π ◦ U ′ = U ∈ EndZ(Φ
s ab
r−1).

By Corollary 3.3, the cokernel of the morphism Γ1(Npr)ab → Φs ab
r , for r ≥ s > 1,

is a Z[U ]-module and this cokernel is isomorphic to the group Γs/Γr. Hence, the
group Γs/Γr is a Z[U ]-module. Observe that Φr

r = Γ1(Npr).

Lemma 3.4. The operator U acts on Γs/Γr as multiplication by p.

Proof. The operator U acts on Γs/Γr as a multiplication by p if and only if it acts on
Φs ab

r

Γ1(Npr)ab
as Ā 7→ Āp. The operator U is the composition of the following morphisms:

Φs ab
r

Γ1(Npr)ab
V
−→ (Φs

r∩Γ
0(p))ab

(Γ1(Npr)∩Γ0(p))ab
t−t−1

−→
Φs ab

r+1

Φr ab
r+1

−→ Φs ab
r

Γ1(Npr)ab

Ā 7−→ Āp 7−→ tĀpt−1 7−→ tĀpt−1.

(3.3)

Let {αi =
(

1 i
0 1

)

}p−1
i=0 be the coset representatives of the group Φs

r ∩ Γ0(p) in Φs
r.

If we use these representatives to define the map in (3.3), then the transfer map
looks like Ā 7→ Āp. By Remark 3.1, tApt−1 and Ap represent the same coset mod
Γ1(Npr)ab and hence we are done. �
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We would like to define an action of Γ on Φs ab
r and call it the nebentypus action.

This can be done as follows: For r ≥ 2, if d̄ ∈ Γ/Γr, then choose an element
α =

(

a b
c d

)

of SL2(Z) such that pr+1 | c and p | b, i.e., α ∈ Φ2
r+1 ∩ Γ0(p). Such an α

exists, because

Φ2
r+1 ∩ Γ0(p) ։ Γ/Γr+1 ։ Γ/Γr.

The nebentypus action of d on Φs ab
r is given by conjugation by α. This action is well-

defined because if α1 and α2 denote two lifts of d̄, then α−1
1 α2 ∈ Γ1(Npr+1)∩Γ0(p) ⊆

Φs
r and hence for any element x ∈ Φs

r, α
−1
1 α2xα

−1
2 α1 = x in Φs ab

r . Now we shall
show that the actions of U and Γ commutes.

Lemma 3.5. If r ≥ s > 1, the actions of U and Γ commutes on Φs ab
r .

Proof. Though the proof of this lemma is similar to the proof of [1, Lem. 3.5.], here
we make some remarks in between, hence we briefly recall its proof. It is easy to see
that α(Φs

r ∩ Γ0(p))α−1 = Φs
r ∩ Γ0(p) for any α ∈ Φ1

r+1 ∩ Γ0(p), since αΦs
rα

−1 ⊆ Φs
r.

Look at the following commutative diagram

Φs ab
r

α−α−1

//

V
��

Φs ab
r

V
��

(Φs
r ∩ Γ0(p))ab

α−α−1

//

t−t−1

��

(α(Φs
r ∩ Γ0(p))α−1)ab = (Φs

r ∩ Γ0(p))ab

αtα−1(−)αt−1α−1

��

Φs ab
r+1

α−α−1

//

��

(αΦs
r+1α

−1)ab = Φs ab
r+1

��

Φs ab
r

α−α−1

// (αΦs
rα

−1)ab = Φs ab
r .

The top square in the diagram above commutes because if {γ1, . . . , γq} form a set
coset representatives for the group Φs

r∩Γ
0(p) in Φs

r, so is the set {αγ1α
−1, . . . , αγqα

−1}.
Observe that, this diagram commutes even if α ∈ Φ1

r ∩Γ
0(p). The last square com-

mutes by the functoriality of the transfer map.
We now prove the commutativity of the middle square, i.e., the map

αtα−1(−)αt−1α−1 : (Φs
r ∩ Γ0(p))ab → Φs ab

r+1 (3.4)

is t− t−1. If g ∈ Φs
r ∩ Γ0(p), then

αtα−1gαt−1α−1 = (αtα−1t−1)tgt−1(αtα−1t−1)−1.

Since αtα−1t−1 ∈ Γ1(Npr+1) for α ∈ Φ1
r+1 ∩ Γ0(p), we see that the conjugation by

αtα−1t−1 induces identity on Φs ab
r+1 (because elements of Φs

r+1 do commute in Φs ab
r+1).

In the above diagram composition of the vertical morphisms on either side are the
operator U and it commutes with the automorphism of Φs

r induced by conjugation
by α, but we know Γ acts on Φs

r by conjugation by such elements α. �

Observe that the inclusion Γ1(Npr) ⊆ Φs
r gives rise to the another transfer map

Φs ab
r

V
−→ Γ1(Npr)ab

Lemma 3.6. The transfer morphism V : Φs ab
r → Γ1(Npr)ab commutes with the

action of U on its source and target.
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Proof. It suffices to prove that the following diagram (in which V denotes the trans-
fer maps between various abelianizations) commutes:

Φs ab
r

V
//

V
��

Φr ab
r

V
��

(Φs
r ∩ Γ0(p))ab

V
//

t−t−1

��

(Φr
r ∩ Γ0(p)) ab

t−t−1

��

Φs ab
r+1

V
// Φr ab

r+1.

The top square in the diagram above commutes because of functoriality of the
transfer map. The commutativity of the bottom square follows by the following
calculation.

If σd =
(

a b
c d

)

, where d runs through coset representatives of Γr in Γs, forms a set
of coset representatives for the group Γ1(Npr) ∩ Γ0(p) in Φs

r ∩ Γ0(p), then so are

tσdt
−1 =

(

a b/p
cp d

)

for the group Γ1(Npr) in Φs
r (by Remark 2.3). �

In this section, we have defined the U -operators for the congruence subgroups
{Φs

r} and proved that morphisms between these congruence subgroups respects the
action of U and this action commutes with the action of Γ.

4. Ordinary parts

Let A be a commutative finite Zp-algebra and U be a non-zero element of A. It
well-known that A factors as a product of local rings. Let Aord denote the product
of all those local rings of A in which the projection of U is a unit. This is a flat
A-algebra.

Let M be any module in the abelian category of Zp[X ]-modules which are finitely
generated as Zp-modules. In this case, we take A to be the image of Zp[X ] in
EndZp

(M), which is a finite Zp-algebra, and U to be the image of X . We define

Mord := M ⊗A Aord

and call this the ordinary part of M . Observe that taking ordinary parts is an exact
functor on our abelian category.

If we consider X to be the U -operator corresponding to the prime p, we may
consider the ordinary part of the Zp-homology of the curve Yr, i.e., the module
(Γ1(Npr)ab ⊗ Zp)

ord, which is a Γ-module by Lemma 3.5.
We have the following theorem for the prime p = 2, which is similar to Theorem

3.1 in [3] for p ≥ 5 and for the congruence subgroups Γ1(Npr) for r ≥ 1.

Theorem 4.1. If r ≥ s > 1, then the morphism of abelian groups

(Γ1(Npr)⊗ Zp)
ord/as → (Γ1(Nps)⊗ Zp)

ord

is an isomorphism.

Proof. We shall show that

(Γ1(Npr)ab ⊗ Zp)
ord/as

∼
−→ (Φs ab

r ⊗ Zp)
ord ∼
−→ (Γ1(Nps)ab ⊗ Zp)

ord. (4.1)

If π : Φs ab
r → Φs ab

r−1 is the morphism induced by the inclusion Φs
r ⊂ Φs

r−1, then

U ′ ◦ π = U ∈ End(Φs ab
r ), π ◦ U ′ = U ∈ End(Φs ab

r−1).
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By Lemma 3.2, we have the following diagram

Φs ab
r−1

π
//

U ′

��

U

""❋
❋

❋

❋

❋

❋

❋

❋

Φs ab
r−2

U ′

��

Φs ab
r

π
//

U ′

��

U

""❋
❋

❋

❋

❋

❋

❋

❋

Φs ab
r−1

U ′

��

Φs ab
r+1

π
// Φs ab

r .

The existence of U ′ implies that upon tensoring over Zp and taking the ordinary
parts π induces an isomorphism (and U−1 ◦ U ′ provides an inverse to π)

(Φs ab
r ⊗ Zp)

ord = (Φs ab
r−1 ⊗ Zp)

ord.

By induction on r, we obtain the second isomorphism in (4.1), i.e.,

(Φs ab
r ⊗ Zp)

ord = (Φs ab
s ⊗ Zp)

ord = (Γ1(Nps)ab ⊗ Zp)
ord.

To prove the first isomorphism consider the short exact sequence

1→ Γ1(Npr)ab/as → Φs ab
r → (Γs/Γr)→ 1.

By tensoring this sequence with Zp and then taking the ordinary parts to obtain

1→ (Γ1(Npr)ab ⊗ Zp)
ord/as → (Φs ab

r ⊗ Zp)
ord → (Γs/Γr)

ord → 1,

because Zp is flat as a Z-module and ordinary parts preserves exactness. By
Lemma 3.4, the operator U acts on Γs/Γr as multiplication by p and so is a nilpo-
tent operator, as Γs/Γr is a p-torsion group. Thus (Γs/Γr)

ord = 0, and hence the
Theorem follows. �

5. Iwasawa modules

We have the following inverse system indexed by natural numbers r ≥ 2,

· · · → Γ1(Npr)ab ⊗ Zp → · · · → Γ1(Np2)ab ⊗ Zp.

Define the Iwasawa module by

W := lim
←−
r≥2

Γ1(Npr)ab ⊗ Zp.

The profinite group Γ acts on the Zp-module Γ1(Npr)ab ⊗ Zp through its finite
quotient Γ/Γr. Thus the Iwasawa module W becomes a module over the completed
group algebra

Λ := Zp[[Γ]] = lim
←−
r≥2

Zp[Γ/Γr].

Though the Iwasawa module W is difficult to understand, by Theorem 4.1, we
can understand the ordinary part of W very well. To make the statement clear, let
us slightly abstract the situation.

Let {Mr}r≥2 be a system of Λ-modules. Further, assume that each Mr is point-
wise fixed by Γr and hence a module over Λ/arΛ = Zp[Γ/Γr]. For each r ≥ s ≥ 2,
we have a map Mr →Ms such that it factors via

Mr/asMr → Ms.
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Define W := lim
←−r≥2

Mr. We have a collection of maps W →Mr for each r ≥ 2 and

they factor as
W/arW → Mr.

Proposition 5.1. Assume that each Mr is p-adically complete and for each r ≥ s ≥
2, Mr/asMr → Ms is an isomorphism. Then W/asW ։ Ms is an isomorphism.

Proof. For r ≥ s ≥ 2, the maps Mr → Ms are surjective, and hence the canonical
map from W → Ms is also surjective. We shall show that the kernel is asW .

Since each Mr is p-adically complete and is point-wise fixed by Γr, we have
Mr = lim

←−i
Mr/n

iMr, where Γr = 〈γr〉 and n = (γr− 1, p), i.e., each Mr is n-adically
complete.

By induction on i, we get that γpi

s −1/γs−1 ∈ (γs−1, p)i. In particular, we have

γpr−2

2 −1/γ2−1 ∈ m = (γ2−1, p). Hence, m
pr−2

⊆ ((γ2−1)
pr−2

, p) ⊆ n ⊆ m = (a2, p).
As a result, we see that each Mr is m-adically complete, since they are n-adically
complete. Once we have that each Mr is m-adically complete, then proving the
injectivity of the above map is quite similar to the proof of [1, Prop. 5.1]. �

The following Theorem is an immediate consequence of the Proposition above.

Theorem 5.2. For any r ≥ 2, we have

Word/arW
ord ∼= (Γ1(Npr)ab ⊗ Zp)

ord

is the Γr-co-invariants of W
ord.

Proof. This follows from Proposition 5.1 together with Theorem 4.1 �

The above Theorem is a key ingredient for the proof of the Theorem 5.3. The
Λ-module Word is a compact Λ-module (under the projective limit of the p-adic
topologies on each module Γ1(Npr)ab ⊗ Zp, which are free of finite rank over Zp,
and also since Word is a direct factor of W).

Furthermore, Theorem 5.2 implies that the projective limit topology on Word

coincides with its m-adic topology (where m = (a2, p) ⊂ Λ denotes the maximal
ideal of Λ), because the kernels of the projections Λ → Zp/p

rZp[Γ/Γr] are co-final
with the sequence of ideals m

r in Λ. Thus Word is a Λ-module, compact in its
m-adic topology such that

Word/m = Word/(a2, p) = (Γ1(Nq)ab ⊗ Zp/p)
ord

is a finite dimensional Zp/pZp-module, of dimension d (say). By Nakayama’s lemma,
we have that Word is a finitely generated Λ-module with a minimal generating set
has cardinality d. We have the following theorem for the prime p = 2, which is
similar to the main theorem in [3] for p ≥ 5.

Theorem 5.3 (Main Result). The module Word is free of finite rank over Λ, and
its Λ-rank is equal to d.

As a corollary, we see that, for r ≥ 2, the Zp-rank of the free Zp-module
(Γ1(Npr)ab ⊗ Zp)

ord is d. In particular, these Zp-ranks are independent of pr in
the level. Using this result, we have proved control theorems for ordinary 2-adic
families of modular forms, see [2]. The classical versions of this theorem for p = 2, 3
do not seem to be explicitly available in the literature, though an adèlic version of
it can be found in [4].
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6. Reflexivity results

To prove Theorem 5.3, it enough to show that Word is a reflexive Λ-module [5].
We show this by considering the duality theory of the modules (Γ1(Npr)ab⊗Zp)

ord

and showing that they are reflexive as Zp[Γ/Γr]-modules. Now, we briefly recall the
notion of reflexivity, and the necessary results. For more details, see [1, §6].

Suppose that R is a commutative ring, G is a finite group, and M is a left R[G]-
module. Let N be any R-module. Then HomR(M,N) is a right R[G]-module,
via

(f ∗ g)(x) := f(g−1x).

Since the ring R[G] is naturally a bi-module over itself, via the ring multiplication,
R[G] ⊗R N is an R[G]-bi-module, making HomR[G](M,R[G] ⊗R N) a right R[G]-
module.

Lemma 6.1 ([1]). There is a canonical isomorphism of right R[G]-modules

HomR(M,N) = HomR[G](M,R[G]⊗R N).

In particular, when N = R, we see that M∗ and HomR[G](M,R[G]) are canoni-
cally isomorphic as right R[G]-modules, where M∗ := HomR(M,R), the R-dual of
M . The analogue of the above lemma for right R[G]-modules is also true. Hence,

HomR(M
∗, R) = HomR[G](M

∗, R[G]).

are canonically isomorphic as left R[G]-modules.
By definition ofM∗, there is a natural morphism ofR-modulesM → HomR(M

∗, R),
which is also a morphism of left R[G]-modules. If this natural morphism of R-
modules is an isomorphism, then we say that M is a reflexive R-module. Thus we
have proved:

Lemma 6.2. If M is a left R[G]-module which is reflexive as an R-module, then
M is reflexive as an R[G]-module.

The crux of this Lemma is that to check the reflexivity of R[G]-module M over
R[G], it is enough to check it over R. Now we need to understand how to use the
reflexivity results for modules over Zp[Γ/Γr] to show the reflexivity of Word as a
Λ-module.

7. Proof of Theorem 5.3

For r ≥ 2, and N ∈ N such that (p,N) = 1. We define the cohomology of Yr as

H1(Yr,Zp) := HomZ(Γ1(Npr)ab,Zp) = HomZp
(Γ1(Npr)ab ⊗ Zp,Zp).

The ring Λ acts on Γ1(Npr)ab ⊗ Zp through its quotient Λr := Λ/ar = Zp[Γ/Γr].
More generally, if r ≥ s > 1 then the ring Λs is equal to Λr/as, hence Λr ։ Λs.
Thus we get the following sequence of morphisms of Λr-modules

HomΛr
(Γ1(Npr)ab ⊗ Zp,Λr)→ HomΛr

(Γ1(Npr)ab ⊗ Zp,Λr)/as

→ HomΛr
(Γ1(Npr)ab ⊗ Zp,Λs) = HomΛs

(Γ1(Npr)ab ⊗ Zp/as,Λs).

If M is any Zp[U ]-module, which is finitely generated as a Zp-module, then so is the
Zp-dual M

∗ := HomZp
(M,Zp). Here M

∗ is a Zp[U ]-module via the dual action of U .
Clearly (M∗)ord = (Mord)∗, i.e., taking ordinary parts commutes with duals. Thus
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we may take ordinary parts of the above diagram of homomorphisms to obtain a
diagram

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord,Λr) −→ HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord,Λr)/as

−→ HomΛs
((Γ1(Npr)ab ⊗ Zp)

ord/as,Λs).

By Theorem 4.1, we have

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord,Λr) −→ HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord,Λr)/as

−→ HomΛs
((Γ1(Nps)ab ⊗ Zp)

ord,Λs).

Lemma 7.1. The morphism

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord,Λr)/as → HomΛs
((Γ1(Nps)ab ⊗ Zp)

ord,Λs)

is an isomorphism.

Proof. By Lemma 3.6, we may restrict V to the ordinary parts to obtain a morphism

(Φs ab
r ⊗ Zp)

ord V
−→ (Γ1(Npr)ab ⊗ Zp)

ord.

Look at the following commutative diagram

HomZp
((Γ1(Npr)ab ⊗ Zp)

ord,Zp)
∼

//

V ∗

��

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord,Λr)

��

HomZp
((Φs ab

r ⊗ Zp)
ord,Zp)

≀

��

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord,Λr)/as

��

HomΛs
((Γ1(Npr)ab ⊗ Zp)

ord/as,Λs)

≀

��

HomZp
((Γ1(Nps)ab ⊗ Zp)

ord,Zp)
∼

// HomΛs
((Γ1(Nps)ab ⊗ Zp)

ord,Λs)

in which the two horizontal isomorphisms are those provided by Lemma 6.2, because
Λr = Zp[Γ/Γr]. The first vertical map V ∗ is the dual morphism of V and the two
vertical isomorphisms are a part of Theorem 4.1 and its proof.

Now to prove the Lemma, it suffices to prove that

HomZp
((Γ1(Npr)ab ⊗ Zp)

ord,Zp)
V ∗

−→ HomZp
((Φs ab

r ⊗ Zp)
ord,Zp) (7.1)

is surjective and kernel(V ∗) = asHomZp
((Γ1(Npr)ab ⊗ Zp)

ord,Zp)).
Since V commutes with U and taking ordinary parts commutes with taking Zp-

duals, the morphism in (7.1) is the ordinary part of the morphism

HomZp
(Γ1(Npr)ab ⊗ Zp,Zp)

V ∗

−→ HomZp
(Φs ab

r ⊗ Zp,Zp). (7.2)

Now, it suffices to show that the morphism V ∗ in (7.2) is surjective with kernel
equal to asHomZp

((Γ1(Npr)ab ⊗ Zp),Zp), since taking ordinary parts is also exact
and commutes with the action of Γ. But, this claim was proved in [1, §8] for torsion-
free groups H and G such that H ⊆ G, instead of Γ1(Npr) ⊆ Φs

r. Observe that,
when p = 2 and r ≥ s ≥ 2, the groups Γ1(Nq) and Φs

r are torsion-free, since Γ1(M)
is torsion free for all M ≥ 3. �
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We now have all the information needed to prove Theorem 5.3. Consider the
chain of Λ-modules

· · · −→ HomΛr
((Φr ab

r ⊗ Zp)
ord,Λr) −→ · · · −→ HomZp

((Γ1(Nq)ab ⊗ Zp)
ord,Zp).

Lemma 7.2. There is a canonical isomorphism

HomΛ(W
ord,Λ) = lim

←−
r

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord,Λr).

Proof. We have the following canonical isomorphisms

HomΛ(W
ord,Λ) = lim

←−
r

HomΛr
(Word/ar,Λr) = lim

←−
r

HomΛr
((Γ1(Npr)ab ⊗ Zp)

ord,Λr),

where the last isomorphism follows from the Theorem 5.2. �

Proposition 7.3. For r > 1, there is a canonical isomorphism

HomΛ(W
ord,Λ)/ar = HomΛr

((Γ1(Npr)ab ⊗ Zp)
ord,Λr).

Proof. The claim follows from Lemma 7.1, Lemma 7.2, and Lemma 5.1. �

Theorem 7.4. The module Word is Λ-free.

Proof. Since any finitely generated reflexive Λ-module is free, it suffices to show
that Word is a reflexive Λ-module. By Proposition 7.3 and Lemma 6.2, we have:

HomΛ(HomΛ(W
ord,Λ),Λ) = lim

←−
r

HomΛ(HomΛr
(Word,Λ)/ar,Λr)

= lim
←−
r

HomΛr
(HomΛr

((Γ1(Npr)ab ⊗ Zp)
ord,Λr),Λr)

= lim
←−
r

(Γ1(Npr)ab ⊗ Zp)
ord = Word.

�
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